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MCMC Using Hamiltonian Dynamics

Radford M. Neal

5.1 Introduction

Markov chain Monte Carlo (MCMC) originated with the classic paper of Metropolis et al.
(1953), where it was used to simulate the distribution of states for a system of idealized
molecules. Not long after, another approach to molecular simulation was introduced (Alder
and Wainwright, 1959), in which the motion of the molecules was deterministic, following
Newton’s laws of motion, which have an elegant formalization as Hamiltonian dynamics. For
finding the properties of bulk materials, these approaches are asymptotically equivalent,
since even in a deterministic simulation, each local region of the material experiences
effectively random influences from distant regions. Despite the large overlap in their appli-
cation areas, the MCMC and molecular dynamics approaches have continued to coexist in
the following decades (see Frenkel and Smit, 1996).

In 1987, a landmark paper by Duane, Kennedy, Pendleton, and Roweth united the
MCMC and molecular dynamics approaches. They called their method “hybrid Monte
Carlo,” which abbreviates to “HMC,” but the phrase “Hamiltonian Monte Carlo,” retain-
ing the abbreviation, is more specific and descriptive, and I will use it here. Duane et al.
applied HMC not to molecular simulation, but to lattice field theory simulations of quan-
tum chromodynamics. Statistical applications of HMC began with my use of it for neural
network models (Neal, 1996a). I also provided a statistically-oriented tutorial on HMC in a
review of MCMC methods (Neal, 1993, Chapter 5). There have been other applications
of HMC to statistical problems (e.g. Ishwaran, 1999; Schmidt, 2009) and statistically-
oriented reviews (e.g. Liu, 2001, Chapter 9), but HMC still seems to be underappreciated
by statisticians, and perhaps also by physicists outside the lattice field theory community.

This review begins by describing Hamiltonian dynamics. Despite terminology that may
be unfamiliar outside physics, the features of Hamiltonian dynamics that are needed for
HMC are elementary. The differential equations of Hamiltonian dynamics must be dis-
cretized for computer implementation. The “leapfrog” scheme that is typically used is
quite simple.

Following this introduction to Hamiltonian dynamics, I describe how to use it to con-
struct an MCMC method. The first step is to define a Hamiltonian function in terms of the
probability distribution we wish to sample from. In addition to the variables we are inter-
ested in (the “position” variables), we must introduce auxiliary “momentum” variables,
which typically have independent Gaussian distributions. The HMC method alternates
simple updates for these momentum variables with Metropolis updates in which a new
state is proposed by computing a trajectory according to Hamiltonian dynamics, imple-
mented with the leapfrog method. A state proposed in this way can be distant from the
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current state but nevertheless have a high probability of acceptance. This bypasses the slow
exploration of the state space that occurs when Metropolis updates are done using a simple
random-walk proposal distribution. (An alternative way of avoiding random walks is to use
short trajectories but only partially replace the momentum variables between trajectories,
so that successive trajectories tend to move in the same direction.)

After presenting the basic HMC method, I discuss practical issues of tuning the leapfrog
stepsize and number of leapfrog steps, as well as theoretical results on the scaling of HMC
with dimensionality. I then present a number of variations on HMC. The acceptance rate
for HMC can be increased for many problems by looking at “windows” of states at the
beginning and end of the trajectory. For many statistical problems, approximate computa-
tion of trajectories (e.g. using subsets of the data) may be beneficial. Tuning of HMC can
be made easier using a “short-cut” in which trajectories computed with a bad choice of
stepsize take little computation time. Finally, “tempering” methods may be useful when
multiple isolated modes exist.

5.2 Hamiltonian Dynamics

Hamiltonian dynamics has a physical interpretation that can provide useful intuitions.
In two dimensions, we can visualize the dynamics as that of a frictionless puck that slides
over a surface of varying height. The state of this system consists of the position of the puck,
given by a two-dimensional vector q, and the momentum of the puck (its mass times its
velocity), given by a two-dimensional vector p. The potential energy, U(q), of the puck is
proportional to the height of the surface at its current position, and its kinetic energy, K(p),
is equal to |p|2/(2m), where m is the mass of the puck. On a level part of the surface, the
puck moves at a constant velocity, equal to p/m. If it encounters a rising slope, the puck’s
momentum allows it to continue, with its kinetic energy decreasing and its potential energy
increasing, until the kinetic energy (and hence p) is zero, at which point it will slide back
down (with kinetic energy increasing and potential energy decreasing).

In nonphysical MCMC applications of Hamiltonian dynamics, the position will cor-
respond to the variables of interest. The potential energy will be minus the log of the
probability density for these variables. Momentum variables, one for each position variable,
will be introduced artificially.

These interpretations may help motivate the exposition below, but if you find otherwise,
the dynamics can also be understood as simply resulting from a certain set of differential
equations.

5.2.1 Hamilton’s Equations

Hamiltonian dynamics operates on a d-dimensional position vector, q, and a d-dimensional
momentum vector, p, so that the full state space has 2d dimensions. The system is described
by a function of q and p known as the Hamiltonian, H(q, p).

5.2.1.1 Equations of Motion

The partial derivatives of the Hamiltonian determine how q and p change over time, t,
according to Hamilton’s equations:
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dqi

dt
= ∂H

∂pi
, (5.1)

dpi

dt
= −∂H

∂qi
, (5.2)

for i = 1, . . ., d. For any time interval of duration s, these equations define a mapping, Ts,
from the state at any time t to the state at time t+ s. (Here, H, and hence Ts, are assumed to
not depend on t.)

Alternatively, we can combine the vectors q and p into the vector z = (q, p) with 2d
dimensions, and write Hamilton’s equations as

dz
dt
= J ∇H(z),

where ∇H is the gradient of H (i.e. [∇H]k = ∂H/∂zk), and

J =
[

0d×d Id×d

−Id×d 0d×d

]
(5.3)

is a 2d× 2d matrix whose quadrants are defined above in terms of identity and zero matrices.

5.2.1.2 Potential and Kinetic Energy

For HMC we usually use Hamiltonian functions that can be written as

H(q, p) = U(q)+ K(p). (5.4)

Here U(q) is called the potential energy, and will be defined to be minus the log probability
density of the distribution for q that we wish to sample, plus any constant that is convenient.
K(p) is called the kinetic energy, and is usually defined as

K(p) = pTM−1p/2. (5.5)

Here M is a symmetric, positive-definite “mass matrix,” which is typically diagonal, and
is often a scalar multiple of the identity matrix. This form for K(p) corresponds to minus
the log probability density (plus a constant) of the zero-mean Gaussian distribution with
covariance matrix M.

With these forms for H and K, Hamilton’s equations 5.1 and 5.2 can be written as follows,
for i = 1, . . ., d:

dqi

dt
= [M−1p]i, (5.6)

dpi

dt
= −∂U

∂qi
. (5.7)
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5.2.1.3 A One-Dimensional Example

Consider a simple example in one dimension (for which q and p are scalars and will be
written without subscripts), in which the Hamiltonian is defined as follows:

H(q, p) = U(q)+ K(p), U(q) = q2

2
, K(p) = p2

2
. (5.8)

As we will see later in Section 5.3.1, this corresponds to a Gaussian distribution for q with
mean zero and variance one. The dynamics resulting from this Hamiltonian (following
Equations 5.6 and 5.7) is

dq
dt
= p,

dp
dt
= −q.

Solutions have the following form, for some constants r and a:

q(t) = r cos(a+ t), p(t) = −r sin(a+ t). (5.9)

Hence, the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p)

plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple
periodic form, but this example does illustrate some important properties that we will look
at next.

5.2.2 Properties of Hamiltonian Dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing MCMC
updates.

5.2.2.1 Reversibility

First, Hamiltonian dynamics is reversible—the mapping Ts from the state at time t, (q(t), p(t)),
to the state at time t+ s, (q(t+ s), p(t+ s)), is one-to-one, and hence has an inverse, T−s.
This inverse mapping is obtained by simply negating the time derivatives in Equations
5.1 and 5.2. When the Hamiltonian has the form in Equation 5.4, and K(p) = K(−p), as in
the quadratic form for the kinetic energy of Equation 5.5, the inverse mapping can also be
obtained by negating p, applying Ts, and then negating p again.

In the simple one-dimensional example of Equation 5.8, T−s is just a counterclockwise
rotation by s radians, undoing the clockwise rotation of Ts.

The reversibility of Hamiltonian dynamics is important for showing that MCMC updates
that use the dynamics leave the desired distribution invariant, since this is most eas-
ily proved by showing reversibility of the Markov chain transitions, which requires
reversibility of the dynamics used to propose a state.

5.2.2.2 Conservation of the Hamiltonian

A second property of the dynamics is that it keeps the Hamiltonian invariant (i.e. conserved).
This is easily seen from Equations 5.1 and 5.2 as follows:

dH
dt
=

d∑
i=1

[
dqi

dt
∂H
∂qi

+ dpi

dt
∂H
∂pi

]
=

d∑
i=1

[
∂H
∂pi

∂H
∂qi

− ∂H
∂qi

∂H
∂pi

]
= 0. (5.10)
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With the Hamiltonian of Equation 5.8, the value of the Hamiltonian is half the squared
distance from the origin, and the solutions (Equation 5.9) stay at a constant distance from
the origin, keeping H constant.

For Metropolis updates using a proposal found by Hamiltonian dynamics, which form
part of the HMC method, the acceptance probability is one if H is kept invariant. We will
see later, however, that in practice we can only make H approximately invariant, and hence
we will not quite be able to achieve this.

5.2.2.3 Volume Preservation

A third fundamental property of Hamiltonian dynamics is that it preserves volume in (q, p)

space (a result known as Liouville’s theorem). If we apply the mapping Ts to the points
in some region R of (q, p) space, with volume V, the image of R under Ts will also have
volume V.

With the Hamiltonian of Equation 5.8, the solutions (Equation 5.9) are rotations, which
obviously do not change the volume. Such rotations also do not change the shape of a
region, but this is not so in general—Hamiltonian dynamics might stretch a region in one
direction, as long as the region is squashed in some other direction so as to preserve volume.

The significance of volume preservation for MCMC is that we need not account for any
change in volume in the acceptance probability for Metropolis updates. If we proposed
new states using some arbitrary, non-Hamiltonian, dynamics, we would need to compute
the determinant of the Jacobian matrix for the mapping the dynamics defines, which might
well be infeasible.

The preservation of volume by Hamiltonian dynamics can be proved in several ways.
One is to note that the divergence of the vector field defined by Equations 5.1 and 5.2 is
zero, which can be seen as follows:

d∑
i=1

[
∂

∂qi

dqi

dt
+ ∂

∂pi

dpi

dt

]
=

d∑
i=1

[
∂

∂qi

∂H
∂pi

− ∂

∂pi

∂H
∂qi

]
=

d∑
i=1

[
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

]
= 0.

A vector field with zero divergence can be shown to preserve volume (Arnold, 1989).
Here, I will show informally that Hamiltonian dynamics preserves volume more directly,

without presuming this property of the divergence. I will, however, take as given that
volume preservation is equivalent to the determinant of the Jacobian matrix of Ts having
absolute value one, which is related to the well-known role of this determinant in regard
to the effect of transformations on definite integrals and on probability density functions.

The 2d× 2d Jacobian matrix of Ts, seen as a mapping of z = (q, p), will be written as Bs. In
general, Bs will depend on the values of q and p before the mapping. When Bs is diagonal,
it is easy to see that the absolute values of its diagonal elements are the factors by which
Ts stretches or compresses a region in each dimension, so that the product of these factors,
which is equal to the absolute value of det(Bs), is the factor by which the volume of the
region changes. I will not prove the general result here, but note that if we were to (say)
rotate the coordinate system used, Bs would no longer be diagonal, but the determinant
of Bs is invariant to such transformations, and so would still give the factor by which the
volume changes.

Let us first consider volume preservation for Hamiltonian dynamics in one dimension
(i.e. with d = 1), for which we can drop the subscripts on p and q. We can approximate Tδ
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for δ near zero as follows:

Tδ(q, p) =
[

q

p

]
+ δ

[
dq/dt

dp/dt

]
+ terms of order δ2 or higher.

Taking the time derivatives from Equations 5.1 and 5.2, the Jacobian matrix can be written as

Bδ =

⎡
⎢⎢⎢⎣

1+ δ ∂2H
∂q∂p

δ
∂2H
∂p2

−δ∂
2H

∂q2 1− δ ∂2H
∂p∂q

⎤
⎥⎥⎥⎦+ terms of order δ2 or higher. (5.11)

We can then write the determinant of this matrix as

det(Bδ) = 1+ δ ∂2H
∂q∂p

− δ ∂2H
∂p∂q

+ terms of order δ2 or higher

= 1+ terms of order δ2 or higher.

Since log(1+ x) ≈ x for x near zero, log det(Bδ) is zero, except perhaps for terms of order
δ2 or higher (though we will see later that it is exactly zero). Now consider log det(Bs) for
some time interval s that is not close to zero. Setting δ = s/n, for some integer n, we can
write Ts as the composition of Tδ applied n times (from n points along the trajectory), so
det(Bs) is the n-fold product of det(Bδ) evaluated at these points. We then find that

log det(Bs) =
n∑

i=1

log det(Bδ)

=
n∑

i=1

{
terms of order 1/n2 or smaller

}
(5.12)

= terms of order 1/n or smaller.

Note that the value of Bδ in the sum in Equation 5.12 might perhaps vary with i, since
the values of q and p vary along the trajectory that produces Ts. However, assuming that
trajectories are not singular, the variation in Bδ must be bounded along any particular
trajectory. Taking the limit as n →∞, we conclude that log det(Bs) = 0, so det(Bs) = 1, and
hence Ts preserves volume.

When d > 1, the same argument applies. The Jacobian matrix will now have the following
form (compare Equation 5.11), where each entry shown below is a d× d submatrix, with
rows indexed by i and columns by j:

Bδ=

⎡
⎢⎢⎢⎢⎢⎢⎣

I + δ
[

∂2H
∂qj∂pi

]
δ

[
∂2H

∂pj∂pi

]

−δ
[

∂2H
∂qj∂qi

]
I − δ

[
∂2H

∂pj∂qi

]

⎤
⎥⎥⎥⎥⎥⎥⎦
+ terms of order δ2 or higher.
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As for d = 1, the determinant of this matrix will be one plus terms of order δ2 or higher,
since all the terms of order δ cancel. The remainder of the argument above then applies
without change.

5.2.2.4 Symplecticness

Volume preservation is also a consequence of Hamiltonian dynamics being symplectic. Let-
ting z = (q, p), and defining J as in Equation 5.3, the symplecticness condition is that the
Jacobian matrix, Bs, of the mapping Ts satisfies

BT
s J−1 Bs = J−1.

This implies volume conservation, since det(BT
s ) det( J−1) det(Bs) = det( J−1) implies that

det(Bs)
2 is one. When d > 1, the symplecticness condition is stronger than volume preserva-

tion. Hamiltonian dynamics and the symplecticness condition can be generalized to where
J is any matrix for which JT = −J and det( J) = 0.

Crucially, reversibility, preservation of volume, and symplecticness can be maintained
exactly even when, as is necessary in practice, Hamiltonian dynamics is approximated, as
we will see next.

5.2.3 Discretizing Hamilton’s Equations—The Leapfrog Method

For computer implementation, Hamilton’s equations must be approximated by discretizing
time, using some small stepsize, ε. Starting with the state at time zero, we iteratively compute
(approximately) the state at times ε, 2ε, 3ε, etc.

In discussing how to do this, I will assume that the Hamiltonian has the form H(q, p) =
U(q)+ K(p), as in Equation 5.4. Although the methods below can be applied with any form
for the kinetic energy, I assume for simplicity that K(p) = pTM−1p/2, as in Equation 5.5, and
furthermore that M is diagonal, with diagonal elements m1, . . . , md, so that

K(p) =
d∑

i=1

p2
i

2mi
. (5.13)

5.2.3.1 Euler’s Method

Perhaps the best-known way to approximate the solution to a system of differential equa-
tions is Euler’s method. For Hamilton’s equations, this method performs the following
steps, for each component of position and momentum, indexed by i = 1, . . ., d:

pi(t+ ε) = pi(t)+ ε dpi

dt
(t) = pi(t)− ε ∂U

∂qi
(q(t)), (5.14)

qi(t+ ε) = qi(t)+ ε dqi

dt
(t) = qi(t)+ ε pi(t)

mi
. (5.15)

The time derivatives in Equations 5.14 and 5.15 are from the form of Hamilton’s equa-
tions given by Equations 5.6 and 5.7. If we start at t = 0 with given values for qi(0) and
pi(0), we can iterate the steps above to get a trajectory of position and momentum values
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at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).

Figure 5.1a shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, and using a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3× 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.
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(b) Modified Euler’s method, stepsize 0.3
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(c) (d)Leapfrog method, stepsize 0.3
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Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2+ p2/2. The initial
state was q = 0, p = 1. The stepsize was ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).



MCMC Using Hamiltonian Dynamics 121

5.2.3.2 A Modification of Euler’s Method

Much better results can be obtained by slightly modifying Euler’s method, as follows:

pi(t+ ε) = pi(t)− ε ∂U
∂qi

(q(t)), (5.16)

qi(t+ ε) = qi(t)+ ε pi(t+ ε)
mi

. (5.17)

We simply use the new value for the momentum variables, pi, when computing the new
value for the position variables, qi. A method with similar performance can be obtained by
instead updating the qi first and using their new values to update the pi.

Figure 5.1b shows the results using this modification of Euler’s method with ε = 0.3.
Though not perfect, the trajectory it produces is much closer to the true trajectory than
that obtained using Euler’s method, with no tendency to diverge to infinity. This better
performance is related to the modified method’s exact preservation of volume, which helps
avoid divergence to infinity or spiraling into the origin, since these would typically involve
the volume expanding to infinity or contracting to zero.

To see that this modification of Euler’s method preserves volume exactly despite the
finite discretization of time, note that both the transformation from (q(t), p(t)) to (q(t),
p(t+ ε)) via Equation 5.16 and the transformation from (q(t), p(t+ ε)) to (q(t+ ε), p(t+ ε))
via Equation 5.17 are “shear” transformations, in which only some of the variables change
(either the pi or the qi), by amounts that depend only on the variables that do not change.
Any shear transformation will preserve volume, since its Jacobian matrix will have deter-
minant one (as the only nonzero term in the determinant will be the product of diagonal
elements, which will all be one).

5.2.3.3 The Leapfrog Method

Even better results can be obtained with the leapfrog method, which works as follows:

pi (t+ ε/2) = pi(t)− (ε/2)
∂U
∂qi

(q(t)), (5.18)

qi(t+ ε) = qi(t)+ ε pi(t+ ε/2)

mi
, (5.19)

pi(t+ ε) = pi (t+ ε/2)− (ε/2)
∂U
∂qi

(q(t+ ε)). (5.20)

We start with a half step for the momentum variables, then do a full step for the position
variables, using the new values of the momentum variables, and finally do another half step
for the momentum variables, using the new values for the position variables. An analogous
scheme can be used with any kinetic energy function, with ∂K/∂pi replacing pi/mi above.

When we apply Equations 5.18 through 5.20 a second time to go from time t+ ε to t+ 2ε,
we can combine the last half step of the first update, from pi(t+ ε/2) to pi(t+ ε), with the
first half step of the second update, from pi(t+ ε) to pi(t+ ε+ ε/2). The leapfrog method
then looks very similar to the modification of Euler’s method in Equations 5.17 and 5.16,
except that leapfrog performs half steps for momentum at the very beginning and very end
of the trajectory, and the time labels of the momentum values computed are shifted by ε/2.
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The leapfrog method preserves volume exactly, since Equations 5.18 through 5.20 are
shear transformations. Due to its symmetry, it is also reversible by simply negating p,
applying the same number of steps again, and then negating p again.

Figure 5.1c shows the results using the leapfrog method with a stepsize of ε = 0.3, which
are indistinguishable from the true trajectory, at the scale of this plot. In Figure 5.1d, the
results of using the leapfrog method with ε = 1.2 are shown (still with 20 steps, so almost
four cycles are seen, rather than almost one). With this larger stepsize, the approximation
error is clearly visible, but the trajectory still remains stable (and will stay stable indefinitely).
Only when the stepsize approaches ε = 2 do the trajectories become unstable.

5.2.3.4 Local and Global Error of Discretization Methods

I will briefly discuss how the error from discretizing the dynamics behaves in the limit as
the stepsize, ε, goes to zero; Leimkuhler and Reich (2004) provide a much more detailed
discussion. For useful methods, the error goes to zero as εgoes to zero, so that any upper limit
on the error will apply (apart from a usually unknown constant factor) to any differentiable
function of state—for example, if the error for (q, p) is no more than order ε2, the error for
H(q, p) will also be no more than order ε2.

The local error is the error after one step, that moves from time t to time t+ ε. The global
error is the error after simulating for some fixed time interval, s, which will require s/ε
steps. If the local error is order εp, the global error will be order εp−1—the local errors of
order εp accumulate over the s/ε steps to give an error of order εp−1. If we instead fix ε
and consider increasing the time, s, for which the trajectory is simulated, the error can in
general increase exponentially with s. Interestingly, however, this is often not what hap-
pens when simulating Hamiltonian dynamics with a symplectic method, as can be seen in
Figure 5.1.

The Euler method and its modification above have order ε2 local error and order ε global
error. The leapfrog method has order ε3 local error and order ε2 global error. As shown by
Leimkuhler and Reich (2004, Section 4.3.3), this difference is a consequence of leapfrog being
reversible, since any reversible method must have global error that is of even order in ε.

5.3 MCMC from Hamiltonian Dynamics

Using Hamiltonian dynamics to sample from a distribution requires translating the density
function for this distribution to a potential energy function and introducing “momentum”
variables to go with the original variables of interest (now seen as “position” variables). We
can then simulate a Markov chain in which each iteration resamples the momentum and
then does a Metropolis update with a proposal found using Hamiltonian dynamics.

5.3.1 Probability and the Hamiltonian: Canonical Distributions

The distribution we wish to sample can be related to a potential energy function via the
concept of a canonical distribution from statistical mechanics. Given some energy function,
E(x), for the state, x, of some physical system, the canonical distribution over states has
probability or probability density function

P(x) = 1
Z

exp
(−E(x)

T

)
. (5.21)
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Here, T is the temperature of the system,∗ and Z is the normalizing constant needed for
this function to sum or integrate to one. Viewing this the opposite way, if we are interested
in some distribution with density function P(x), we can obtain it as a canonical distribu-
tion with T = 1 by setting E(x) = − log P(x)− log Z, where Z is any convenient positive
constant.

The Hamiltonian is an energy function for the joint state of “position,” q, and “momen-
tum,” p, and so defines a joint distribution for them as follows:

P(q, p) = 1
Z

exp
(−H(q, p)

T

)
.

Note that the invariance of H under Hamiltonian dynamics means that a Hamiltonian
trajectory will (if simulated exactly) move within a hypersurface of constant probability
density.

If H(q, p) = U(q)+ K(p), the joint density is

P(q, p) = 1
Z

exp
(−U(q)

T

)
exp

(−K(p)

T

)
, (5.22)

and we see that q and p are independent, and each have canonical distributions, with energy
functions U(q) and K(p). We will use q to represent the variables of interest, and introduce
p just to allow Hamiltonian dynamics to operate.

In Bayesian statistics, the posterior distribution for the model parameters is the usual
focus of interest, and hence these parameters will take the role of the position, q. We can
express the posterior distribution as a canonical distribution (with T = 1) using a potential
energy function defined as

U(q) = − log
[
π(q)L(q | D)

]
,

where π(q) is the prior density, and L(q|D) is the likelihood function given data D.

5.3.2 The Hamiltonian Monte Carlo Algorithm

We now have the background needed to present the Hamiltonian Monte Carlo algorithm.
HMC can be used to sample only from continuous distributions on R

d for which the den-
sity function can be evaluated (perhaps up to an unknown normalizing constant). For the
moment, I will also assume that the density is nonzero everywhere (but this is relaxed in
Section 5.5.1). We must also be able to compute the partial derivatives of the log of the
density function. These derivatives must therefore exist, except perhaps on a set of points
with probability zero, for which some arbitrary value could be returned.

HMC samples from the canonical distribution for q and p defined by Equation 5.22, in
which q has the distribution of interest, as specified using the potential energy function
U(q). We can choose the distribution of the momentum variables, p, which are independent
of q, as we wish, specifying the distribution via the kinetic energy function, K(p). Current
practice with HMC is to use a quadratic kinetic energy, as in Equation 5.5, which leads
p to have a zero-mean multivariate Gaussian distribution. Most often, the components of

∗ Note to physicists: I assume here that temperature is measured in units that make Boltzmann’s constant unity.
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p are specified to be independent, with component i having variance mi. The kinetic energy
function producing this distribution (setting T = 1) is

K(p) =
d∑

i=1

p2
i

2mi
. (5.23)

We will see in Section 5.4 how the choice for the mi affects performance.

5.3.2.1 The Two Steps of the HMC Algorithm

Each iteration of the HMC algorithm has two steps. The first changes only the momentum;
the second may change both position and momentum. Both steps leave the canonical joint
distribution of (q, p) invariant, and hence their combination also leaves this distribution
invariant.

In the first step, new values for the momentum variables are randomly drawn from their
Gaussian distribution, independently of the current values of the position variables. For the
kinetic energy of Equation 5.23, the d momentum variables are independent, with pi having
mean zero and variance mi. Since q is not changed, and p is drawn from its correct conditional
distribution given q (the same as its marginal distribution, due to independence), this step
obviously leaves the canonical joint distribution invariant.

In the second step, a Metropolis update is performed, using Hamiltonian dynamics to
propose a new state. Starting with the current state, (q, p), Hamiltonian dynamics is simu-
lated for L steps using the leapfrog method (or some other reversible method that preserves
volume), with a stepsize of ε. Here, L and ε are parameters of the algorithm, which need to
be tuned to obtain good performance (as discussed below in Section 5.4.2). The momentum
variables at the end of this L-step trajectory are then negated, giving a proposed state (q∗, p∗).
This proposed state is accepted as the next state of the Markov chain with probability

min
[
1, exp(−H(q∗, p∗)+H(q, p))

] = min
[
1, exp(−U(q∗)+U(q)− K(p∗)+ K(p))

]
.

If the proposed state is not accepted (i.e. it is rejected), the next state is the same as the current
state (and is counted again when estimating the expectation of some function of state by
its average over states of the Markov chain). The negation of the momentum variables at
the end of the trajectory makes the Metropolis proposal symmetrical, as needed for the
acceptance probability above to be valid. This negation need not be done in practice, since
K(p) = K(−p), and the momentum will be replaced before it is used again, in the first step
of the next iteration. (This assumes that these HMC updates are the only ones performed.)

If we look at HMC as sampling from the joint distribution of q and p, the Metropolis step
using a proposal found by Hamiltonian dynamics leaves the probability density for (q, p)

unchanged or almost unchanged. Movement to (q, p) points with a different probability
density is accomplished only by the first step in an HMC iteration, in which p is replaced
by a new value. Fortunately, this replacement of p can change the probability density for
(q, p) by a large amount, so movement to points with a different probability density is
not a problem (at least not for this reason). Looked at in terms of q only, Hamiltonian
dynamics for (q, p) can produce a value for q with a much different probability density
(equivalently, a much different potential energy, U(q)). However, the resampling of the
momentum variables is still crucial to obtaining the proper distribution for q. Without
resampling, H(q, p) = U(q)+ K(p) will be (nearly) constant, and since K(p) and U(q) are
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HMC = function (U, grad_U, epsilon, L, current_q)
{

q = current_q
p = rnorm(length(q),0,1) # independent standard normal variates
current_p = p

# Make a half step for momentum at the beginning
p = p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum

for (i in 1:L)
{

# Make a full step for the position
q = q + epsilon * p
# Make a full step for the momentum, except at end of trajectory
if (i!=L) p = p - epsilon * grad_U(q)

}

# Make a half step for momentum at the end.
p = p - epsilon * grad_U(q) / 2
# Negate momentum at end of trajectory to make the proposal symmetric
p = -p

# Evaluate potential and kinetic energies at start and end of trajectory

current_U = U(current_q)
current_K = sum(current_pˆ2) / 2
proposed_U = U(q)
proposed_K = sum(pˆ2) / 2

# Accept or reject the state at end of trajectory, returning either
# the position at the end of the trajectory or the initial position

if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))
{

return (q) # accept
}
else
{

return (current_q) # reject
}

}

FIGURE 5.2
The Hamiltonian Monte Carlo algorithm.

nonnegative, U(q) could never exceed the initial value of H(q, p) if no resampling for p
were done.

A function that implements a single iteration of the HMC algorithm, written in the R
language,∗ is shown in Figure 5.2. Its first two arguments are functions: U, which returns

∗ R is available for free from www.r-project.org
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the potential energy given a value for q, and grad_U, which returns the vector of partial
derivatives of U given q. Other arguments are the stepsize, epsilon, for leapfrog steps; the
number of leapfrog steps in the trajectory, L; and the current position, current_q, that the
trajectory starts from. Momentum variables are sampled within this function, and discarded
at the end, with only the next position being returned. The kinetic energy is assumed to have
the simplest form, K(p) =∑ p2

i /2 (i.e. all mi are one). In this program, all components of p
and of q are updated simultaneously, using vector operations. This simple implementation
of HMC is available from my web page,∗ along with other R programs with extra features
helpful for practical use, and that illustrate some of the variants of HMC in Section 5.5.

5.3.2.2 Proof That HMC Leaves the Canonical Distribution Invariant

The Metropolis update above is reversible with respect to the canonical distribution for q
and p (with T = 1), a condition also known as “detailed balance,” and which can be phrased
informally as follows. Suppose that we partition the (q, p) space into regions Ak , each with
the same small volume V. Let the image of Ak with respect to the operation of L leapfrog
steps, plus a negation of the momentum, be Bk . Due to the reversibility of the leapfrog steps,
the Bk will also partition the space, and since the leapfrog steps preserve volume (as does
negation), each Bk will also have volume V. Detailed balance holds if, for all i and j,

P(Ai)T(Bj | Ai) = P(Bj)T(Ai | Bj), (5.24)

where P is probability under the canonical distribution, and T(X|Y) is the conditional prob-
ability of proposing and then accepting a move to region X if the current state is in region
Y. Clearly, when i = j, T(Ai | Bj) = T(Bj | Ai) = 0 and so Equation 5.24 will be satisfied.
Since the Hamiltonian is continuous almost everywhere, in the limit as the regions Ak
and Bk become smaller, the Hamiltonian becomes effectively constant within each region,
with value HX in region X, and hence the canonical probability density and the transition
probabilities become effectively constant within each region as well. We can now rewrite
Equation 5.24 for i = j (say, both equal to k) as

V
Z

exp(−HAk ) min
[
1, exp(−HBk+HAk )

] = V
Z

exp(−HBk ) min
[
1, exp(−HAk+HBk )

]
,

which is easily seen to be true.
Detailed balance implies that this Metropolis update leaves the canonical distribution for

q and p invariant. This can be seen as follows. Let R(X) be the probability that the Metropolis
update for a state in the small region X leads to rejection of the proposed state. Suppose
that the current state is distributed according to the canonical distribution. The probability
that the next state is in a small region Bk is the sum of the probability that the current state is
in Bk and the update leads to rejection, and the probability that the current state is in some
region from which a move to Bk is proposed and accepted. The probability of the next state

∗ www.cs.utoronto.ca/∼radford
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being in Bk can therefore be written as

P(Bk)R(Bk)+
∑

i

P(Ai)T(Bk|Ai) = P(Bk)R(Bk)+
∑

i

P(Bk)T(Ai|Bk)

= P(Bk)R(Bk)+ P(Bk)
∑

i

T(Ai|Bk)

= P(Bk)R(Bk)+ P(Bk)(1− R(Bk))

= P(Bk).

The Metropolis update within HMC therefore leaves the canonical distribution invariant.
Since both the sampling of momentum variables and the Metropolis update with a pro-

posal found by Hamiltonian dynamics leave the canonical distribution invariant, the HMC
algorithm as a whole does as well.

5.3.2.3 Ergodicity of HMC

Typically, the HMC algorithm will also be “ergodic”—it will not be trapped in some subset of
the state space, and hence will asymptotically converge to its (unique) invariant distribution.
In an HMC iteration, any value can be sampled for the momentum variables, which can
typically then affect the position variables in arbitrary ways. However, ergodicity can fail if
the L leapfrog steps in a trajectory produce an exact periodicity for some function of state.
For example, with the simple Hamiltonian of Equation 5.8, the exact solutions (given by
Equation 5.9) are periodic with period 2π. Approximate trajectories found with L leapfrog
steps with stepsize εmay return to the same position coordinate when Lε is approximately
2π. HMC with such values for L and εwill not be ergodic. For nearby values of L and ε, HMC
may be theoretically ergodic, but take a very long time to move about the full state space.

This potential problem of nonergodicity can be solved by randomly choosing ε or L
(or both) from some fairly small interval (Mackenzie, 1989). Doing this routinely may be
advisable. Although in real problems interactions between variables typically prevent any
exact periodicities from occurring, near periodicities might still slow HMC considerably.

5.3.3 Illustrations of HMC and Its Benefits

I will now illustrate some practical issues with HMC, and demonstrate its potential to
sample much more efficiently than simple methods such as random-walk Metropolis. I use
simple Gaussian distributions for these demonstrations, so that the results can be compared
with known values, but of course HMC is typically used for more complex distributions.

5.3.3.1 Trajectories for a Two-Dimensional Problem

Consider sampling from a distribution for two variables that is bivariate Gaussian, with
means of zero, standard deviations of one, and correlation 0.95. We regard these as
“position” variables, and introduce two corresponding “momentum” variables, defined
to have a Gaussian distribution with means of zero, standard deviations of one, and zero
correlation. We then define the Hamiltonian as

H(q, p) = qTΣ−1q/2+ pTp/2, with Σ =
[

1 0.95
0.95 1

]
.
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FIGURE 5.3
A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of
0.25. The ellipses plotted are one standard deviation from the means. The initial state had q = [−1.50,−1.55]T and
p = [−1, 1]T .

Figure 5.3 shows a trajectory based on this Hamiltonian, such as might be used to propose
a new state in the HMC method, computed using L = 25 leapfrog steps, with a stepsize of
ε = 0.25. Since the full state space is four-dimensional, Figure 5.3 shows the two position
coordinates and the two momentum coordinates in separate plots, while the third plot
shows the value of the Hamiltonian after each leapfrog step.

Notice that this trajectory does not resemble a random walk. Instead, starting from the
lower left-hand corner, the position variables systematically move upward and to the right,
until they reach the upper right-hand corner, at which point the direction of motion is
reversed. The consistency of this motion results from the role of the momentum variables.
The projection of p in the diagonal direction will change only slowly, since the gradient
in that direction is small, and hence the direction of diagonal motion stays the same for
many leapfrog steps. While this large-scale diagonal motion is happening, smaller-scale
oscillations occur, moving back and forth across the “valley” created by the high correlation
between the variables.

The need to keep these smaller oscillations under control limits the stepsize that can
be used. As can be seen in the rightmost plot in Figure 5.3, there are also oscillations in
the value of the Hamiltonian (which would be constant if the trajectory were simulated
exactly). If a larger stepsize were used, these oscillations would be larger. At a critical
stepsize (ε = 0.45 in this example), the trajectory becomes unstable, and the value of the
Hamiltonian grows without bound. As long as the stepsize is less than this, however, the
error in the Hamiltonian stays bounded regardless of the number of leapfrog steps done.
This lack of growth in the error is not guaranteed for all Hamiltonians, but it does hold for
many distributions more complex than Gaussians. As can be seen, however, the error in
the Hamiltonian along the trajectory does tend to be positive more often than negative. In
this example, the error is +0.41 at the end of the trajectory, so if this trajectory were used
for an HMC proposal, the probability of accepting the endpoint as the next state would be
exp(−0.41) = 0.66.

5.3.3.2 Sampling from a Two-Dimensional Distribution

Figures 5.4 and 5.5 show the results of using HMC and a simple random-walk Metropolis
method to sample from a bivariate Gaussian similar to the one just discussed, but with
stronger correlation of 0.98.
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FIGURE 5.4
Twenty iterations of the random-walk Metropolis method (with 20 updates per iteration) and of the Hamiltonian
Monte Carlo method (with 20 leapfrog steps per trajectory) for a two-dimensional Gaussian distribution with
marginal standard deviations of one and correlation 0.98. Only the two position coordinates are plotted, with
ellipses drawn one standard deviation away from the mean.

In this example, as in the previous one, HMC used a kinetic energy (defining the momen-
tum distribution) of K(p) = pTp/2. The results of 20 HMC iterations, using trajectories of
L = 20 leapfrog steps with stepsize ε = 0.18, are shown in the right plot of Figure 5.4. These
values were chosen so that the trajectory length, εL, is sufficient to move to a distant point
in the distribution, without being so large that the trajectory will often waste computation
time by doubling back on itself. The rejection rate for these trajectories was 0.09.

Figure 5.4 also shows every 20th state from 400 iterations of random-walk Metropolis,
with a bivariate Gaussian proposal distribution with the current state as mean, zero correla-
tion, and the same standard deviation for the two coordinates. The standard deviation of the
proposals for this example was 0.18, which is the same as the stepsize used for HMC propos-
als, so that the change in state in these random-walk proposals was comparable to that for a
single leapfrog step for HMC. The rejection rate for these random-walk proposals was 0.37.
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FIGURE 5.5
Two hundred iterations, starting with the 20 iterations shown above, with only the first position coordinate plotted.
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One can see in Figure 5.4 how the systematic motion during an HMC trajectory (illustrated
in Figure 5.3) produces larger changes in state than a corresponding number of random-
walk Metropolis iterations. Figure 5.5 illustrates this difference for longer runs of 20× 200
random-walk Metropolis iterations and of 200 HMC iterations.

5.3.3.3 The Benefit of Avoiding Random Walks

Avoidance of random-walk behavior, as illustrated above, is one major benefit of HMC. In
this example, because of the high correlation between the two position variables, keeping
the acceptance probability for random-walk Metropolis reasonably high requires that the
changes proposed have a magnitude comparable to the standard deviation in the most
constrained direction (0.14 in this example, the square root of the smallest eigenvalue of
the covariance matrix). The changes produced using one Gibbs sampling scan would be
of similar magnitude. The number of iterations needed to reach a state almost independent
of the current state is mostly determined by how long it takes to explore the less constrained
direction, which for this example has standard deviation 1.41—about ten times greater than
the standard deviation in the most constrained direction. We might therefore expect that
we would need around 10 iterations of random-walk Metropolis in which the proposal
was accepted to move to a nearly independent state. But the number needed is actually
roughly the square of this—around 100 iterations with accepted proposals—because the
random-walk Metropolis proposals have no tendency to move consistently in the same
direction.

To see this, note that the variance of the position after n iterations of random-walk
Metropolis from some start state will grow in proportion to n (until this variance becomes
comparable to the overall variance of the state), since the position is the sum of mostly
independent movements for each iteration. The standard deviation of the amount moved
(which gives the typical amount of movement) is therefore proportional to

√
n.

The stepsize used for the leapfrog steps is similarly limited by the most constrained
direction, but the movement will be in the same direction for many steps. The distance
moved after n steps will therefore tend to be proportional to n, until the distance moved
becomes comparable to the overall width of the distribution. The advantage compared to
movement by a random walk will be a factor roughly equal to the ratio of the standard
deviations in the least confined direction and most confined direction—about 10 here.

Because avoiding a random walk is so beneficial, the optimal standard deviation for
random-walk Metropolis proposals in this example is actually much larger than the value
of 0.18 used here. A proposal standard deviation of 2.0 gives a very low acceptance rate
(0.06), but this is more than compensated for by the large movement (to a nearly independent
point) on the rare occasions when a proposal is accepted, producing a method that is about
as efficient as HMC. However, this strategy of making large changes with a small acceptance
rate works only when, as here, the distribution is tightly constrained in only one direction.

5.3.3.4 Sampling from a 100-Dimensional Distribution

More typical behavior of HMC and random-walk Metropolis is illustrated by a 100-
dimensional multivariate Gaussian distribution in which the variables are independent,
with means of zero, and standard deviations of 0.01, 0.02, . . . , 0.99, 1.00. Suppose that we
have no knowledge of the details of this distribution, so we will use HMC with the same
simple, rotationally symmetric kinetic energy function as above, K(p) = pTp/2, and use
random-walk Metropolis proposals in which changes to each variable are independent, all
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with the same standard deviation. As discussed below in Section 5.4.1, the performance of
both these sampling methods is invariant to rotation, so this example is illustrative of how
they perform on any multivariate Gaussian distribution in which the square roots of the
eigenvalues of the covariance matrix are 0.01, 0.02, . . . , 0.99, 1.00.

For this problem, the position coordinates, qi, and corresponding momentum coordi-
nates, pi, are all independent, so the leapfrog steps used to simulate a trajectory operate
independently for each (qi, pi) pair. However, whether the trajectory is accepted depends
on the total error in the Hamiltonian due to the leapfrog discretization, which is a sum of
the errors due to each (qi, pi) pair (for the terms in the Hamiltonian involving this pair).
Keeping this error small requires limiting the leapfrog stepsize to a value roughly equal to
the smallest of the standard deviations (0.01), which implies that many leapfrog steps will
be needed to move a distance comparable to the largest of the standard deviations (1.00).

Consistent with this, I applied HMC to this distribution using trajectories with L = 150
and with ε randomly selected for each iteration, uniformly from (0.0104, 0.0156), which
is 0.013± 20%. I used random-walk Metropolis with proposal standard deviation drawn
uniformly from (0.0176, 0.0264), which is 0.022± 20%. These are close to optimal set-
tings for both methods. The rejection rate was 0.13 for HMC and 0.75 for random-walk
Metropolis.

Figure 5.6 shows results from runs of 1000 iterations of HMC (right) and of random-
walk Metropolis (left), counting 150 random-walk Metropolis updates as one iteration, so
that the computation time per iteration is comparable to that for HMC. The plot shows
the last variable, with the largest standard deviation. The autocorrelation of these values
is clearly much higher for random-walk Metropolis than for HMC. Figure 5.7 shows the
estimates for the mean and standard deviation of each of the 100 variables obtained using
the HMC and random-walk Metropolis runs (estimates were just the sample means and
sample standard deviations of the values from the 1000 iterations). Except for the first few
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FIGURE 5.6
Values for the variable with largest standard deviation for the 100-dimensional example, from a random-walk
Metropolis run and an HMC run with L = 150. To match computation time, 150 updates were counted as one
iteration for random-walk Metropolis.
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FIGURE 5.7
Estimates of means (top) and standard deviations (bottom) for the 100-dimensional example, using random-walk
Metropolis (left) and HMC (right). The 100 variables are labeled on the horizontal axes by the true standard
deviaton of that variable. Estimates are on the vertical axes.

variables (with smallest standard deviations), the error in the mean estimates from HMC is
roughly 10 times less than the error in the mean estimates from random-walk Metropolis.
The standard deviation estimates from HMC are also better.

The randomization of the leapfrog stepsize done in this example follows the advice dis-
cussed at the end of Section 5.3.2. In this example, not randomizing the stepsize (fixing
ε = 0.013) does in fact cause problems—the variables with standard deviations near 0.31 or
0.62 change only slowly, since 150 leapfrog steps with ε = 0.013 produces nearly a full or
half cycle for these variables, so an accepted trajectory does not make much of a change in
the absolute value of the variable.
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5.4 HMC in Practice and Theory

Obtaining the benefits from HMC illustrated in the previous section, including random-
walk avoidance, requires proper tuning of L and ε. I discuss tuning of HMC below, and
also show how performance can be improved by using whatever knowledge is available
regarding the scales of variables and their correlations. After briefly discussing what to do
when HMC alone is not enough, I discuss an additional benefit of HMC—its better scaling
with dimensionality than simple Metropolis methods.

5.4.1 Effect of Linear Transformations

Like all MCMC methods I am aware of, the performance of HMC may change if the variables
being sampled are transformed by multiplication by some nonsingular matrix, A. However,
performance stays the same (except perhaps in terms of computation time per iteration) if
at the same time the corresponding momentum variables are multiplied by (AT)−1. These
facts provide insight into the operation of HMC, and can help us improve performance
when we have some knowledge of the scales and correlations of the variables.

Let the new variables be q′ = Aq. The probability density for q′ will be given by P′(q′) =
P(A−1q′)/|det(A)|, where P(q) is the density for q. If the distribution for q is the canoni-
cal distribution for a potential energy function U(q) (see Section 5.3.1), we can obtain the
distribution for q′ as the canonical distribution for U′(q′) = U(A−1q′). (Since |det(A)| is a
constant, we need not include a log |det(A)| term in the potential energy.)

We can choose whatever distribution we wish for the corresponding momentum vari-
ables, so we could decide to use the same kinetic energy as before. Alternatively, we can
choose to transform the momentum variables by p′ = (AT)−1p, and use a new kinetic energy
of K′(p′) = K(ATp′). If we were using a quadratic kinetic energy, K(p) = pTM−1p/2 (see
Equation 5.5), the new kinetic energy will be

K′(p′) = (ATp′)TM−1(ATp′)/2 = (p′)T(A M−1AT) p′/2 = (p′)T(M′)−1p′/2, (5.25)

where M′ = (A M−1AT)−1 = (A−1)TMA−1.
If we use momentum variables transformed in this way, the dynamics for the new vari-

ables, (q′, p′), essentially replicates the original dynamics for (q, p), so the performance of
HMC will be the same. To see this, note that if we follow Hamiltonian dynamics for (q′, p′),
the result in terms of the original variables will be as follows (see Equations 5.6 and 5.7):

dq
dt
= A−1 dq′

dt
= A−1(M′)−1 p′ = A−1(A M−1AT)(AT)−1 p = M−1 p,

dp
dt
= AT dp′

dt
= −AT ∇U′(q′) = −AT (A−1)T ∇U(A−1q′) = −∇U(q),

which matches what would happen following Hamiltonian dynamics for (q, p).
If A is an orthogonal matrix (such as a rotation matrix), for which A−1 = AT , the per-

formance of HMC is unchanged if we transform both q and p by multiplying by A (since
(AT)−1 = A). If we chose a rotationally symmetric distribution for the momentum, with M =
mI (i.e. the momentum variables are independent, each having variance m), such an ortho-
gonal transformation will not change the kinetic energy function (and hence not change the
distribution of the momentum variables), since we will have M′ = (A (mI)−1AT)−1 = mI.
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Such an invariance to rotation holds also for a random-walk Metropolis method in which
the proposal distribution is rotationally symmetric (e.g. Gaussian with covariance matrix
mI). In contrast, Gibbs sampling is not rotationally invariant, nor is a scheme in which the
Metropolis algorithm is used to update each variable in turn (with a proposal that changes
only that variable). However, Gibbs sampling is invariant to rescaling of the variables (trans-
formation by a diagonal matrix), which is not true for HMC or random-walk Metropolis,
unless the kinetic energy or proposal distribution is transformed in a corresponding way.

Suppose that we have an estimate,Σ, of the covariance matrix for q, and suppose also that q
has at least a roughly Gaussian distribution. How can we use this information to improve the
performance of HMC? One way is to transform the variables so that their covariance matrix
is close to the identity, by finding the Cholesky decomposition,Σ = LLT , with L being lower-
triangular, and letting q′ = L−1q. We then let our kinetic energy function be K(p) = pTp/2.
Since the momentum variables are independent, and the position variables are close to
independent with variances close to one (if our estimate Σ and our assumption that q
is close to Gaussian are good), HMC should perform well using trajectories with a small
number of leapfrog steps, which will move all variables to a nearly independent point. More
realistically, the estimateΣmay not be very good, but this transformation could still improve
performance compared to using the same kinetic energy with the original q variables.

An equivalent way to make use of the estimated covariance Σ is to keep the original q
variables, but use the kinetic energy function K(p) = pTΣp/2—that is, we let the momentum
variables have covariance Σ−1. The equivalence can be seen by transforming this kinetic
energy to correspond to a transformation to q′ = L−1q (see Equation 5.25), which gives
K(p′) = (p′)TM′−1p′ with M′ = (L−1(LLT)(L−1)T)−1 = I.

Using such a kinetic energy function to compensate for correlations between position
variables has a long history in molecular dynamics (Bennett, 1975). The usefulness of this
technique is limited by the computational cost of matrix operations when the dimensionality
is high.

Using a diagonal Σ can be feasible even in high-dimensional problems. Of course, this
provides information only about the different scales of the variables, not their correlation.
Moreover, when the actual correlations are nonzero, it is not clear what scales to use. Making
an optimal choice is probably infeasible. Some approximation to the conditional standard
deviation of each variable given all the others may be possible—as I have done for Bayesian
neural network models (Neal, 1996a). If this also is not feasible, using approximations to
the marginal standard deviations of the variables may be better than using the same scale
for them all.

5.4.2 Tuning HMC

One practical impediment to the use of Hamiltonian Monte Carlo is the need to select
suitable values for the leapfrog stepsize, ε, and the number of leapfrog steps, L, which
together determine the length of the trajectory in fictitious time, εL. Most MCMC methods
have parameters that need to be tuned, with the notable exception of Gibbs sampling when
the conditional distributions are amenable to direct sampling. However, tuning HMC is
more difficult in some respects than tuning a simple Metropolis method.

5.4.2.1 Preliminary Runs and Trace Plots

Tuning HMC will usually require preliminary runs with trial values for ε and L. In judg-
ing how well these runs work, trace plots of quantities that are thought to be indicative



MCMC Using Hamiltonian Dynamics 135

of overall convergence should be examined. For Bayesian inference problems, high-level
hyperparameters are often among the slowest-moving quantities. The value of the potential
energy function, U(q), is also usually of central significance. The autocorrelation for such
quantities indicates how well the Markov chain is exploring the state space. Ideally, we
would like the state after one HMC iteration to be nearly independent of the previous state.

Unfortunately, preliminary runs can be misleading, if they are not long enough to have
reached equilibrium. It is possible that the best choices of ε and L for reaching equilibrium
are different from the best choices once equilibrium is reached, and even at equilibrium, it
is possible that the best choices vary from one place to another. If necessary, at each iteration
of HMC, ε and L can be chosen randomly from a selection of values that are appropriate
for different parts of the state space (or these selections and can be used sequentially).

Doing several runs with different random starting states is advisable (for both preliminary
and final runs), so that problems with isolated modes can be detected. Note that HMC is no
less (or more) vulnerable to problems with isolated modes than other MCMC methods that
make local changes to the state. If isolated modes are found to exist, something needs to be
done to solve this problem—just combining runs that are each confined to a single mode is
not valid. A modification of HMC with “tempering” along a trajectory (Section 5.5.7) can
sometimes help with multiple modes.

5.4.2.2 What Stepsize?

Selecting a suitable leapfrog stepsize, ε, is crucial. Too large a stepsize will result in a very
low acceptance rate for states proposed by simulating trajectories. Too small a stepsize will
either waste computation time, by the same factor as the stepsize is too small, or (worse)
will lead to slow exploration by a random walk, if the trajectory length, εL, is then too short
(i.e. L is not large enough; see below).

Fortunately, as illustrated in Figure 5.3, the choice of stepsize is almost independent of
how many leapfrog steps are done. The error in the value of the Hamiltonian (which will
determine the rejection rate) usually does not increase with the number of leapfrog steps,
provided that the stepsize is small enough that the dynamics is stable.

The issue of stability can be seen in a simple one-dimensional problem in which the
following Hamiltonian is used:

H(q, p) = q2

2σ2 +
p2

2
.

The distribution for q that this defines is Gaussian with standard deviation σ. Aleapfrog step
for this system (as for any quadratic Hamiltonian) will be a linear mapping from (q(t), p(t))
to (q(t+ ε), p(t+ ε)). Referring to Equations 5.18 through 5.20, we see that this mapping can
be represented by a matrix multiplication as follows:[

q(t+ ε)
p(t+ ε)

]
=
[

1− ε2/2σ2 ε

−ε/σ2 + ε3/4σ4 1− ε2/2σ2

][
q(t)

p(t)

]
.

Whether iterating this mapping leads to a stable trajectory, or one that diverges to infinity,
depends on the magnitudes of the eigenvalues of the above matrix, which are(

1− ε2

2σ2

)
±
( ε
σ

)√
ε2/4σ2 − 1.
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When ε/σ > 2, these eigenvalues are real, and at least one will have absolute value greater
than one. Trajectories computed using the leapfrog method with this ε will therefore be
unstable. When ε/σ < 2, the eigenvalues are complex, and both have squared magnitude of

(
1− ε2

2σ2

)2

+
(
ε2

σ2

)(
1− ε2

4σ2

)
= 1.

Trajectories computed with ε < 2σ are therefore stable.
For multidimensional problems in which the kinetic energy used is K(p) = pTp/2 (as in the

example above), the stability limit for εwill be determined (roughly) by the width of the dis-
tribution in the most constrained direction—for a Gaussian distribution, this would the
square root of the smallest eigenvalue of the covariance matrix for q. Stability for more
general quadratic Hamiltonians with K(p) = pTM−1p/2 can be determined by applying a
linear transformation that makes K(p′) = (p′)Tp′/2, as discussed above in Section 5.4.1.

When a stepsize, ε, that produces unstable trajectories is used, the value of H grows
exponentially with L, and consequently the acceptance probability will be extremely small.
For low-dimensional problems, using a value for ε that is just a little below the stability limit
is sufficient to produce a good acceptance rate. For high-dimensional problems, however,
the stepsize may need to be reduced further than this to keep the error in H to a level that
produces a good acceptance probability. This is discussed further in Section 5.4.4.

Choosing too large a value of ε can have very bad effects on the performance of HMC.
In this respect, HMC is more sensitive to tuning than random-walk Metropolis. A standard
deviation for proposals needs to be chosen for random-walk Metropolis, but performance
degrades smoothly as this choice is made too large, without the sharp degradation seen
with HMC when ε exceeds the stability limit. (However, in high-dimensional problems, the
degradation in random-walk Metropolis with too large a proposal standard deviation can
also be quite sharp, so this distinction becomes less clear.)

This sharp degradation in performance of HMC when the stepsize is too big would not
be a serious issue if the stability limit were constant—the problem would be obvious from
preliminary runs, and so could be fixed. The real danger is that the stability limit may differ
for several regions of the state space that all have substantial probability. If the preliminary
runs are started in a region where the stability limit is large, a choice of ε a little less than this
limit might appear to be appropriate. However, if this ε is above the stability limit for some
other region, the runs may never visit this region, even though it has substantial probability,
producing a drastically wrong result. To see why this could happen, note that if the run
ever does visit the region where the chosen εwould produce instability, it will stay there for
a very long time, since the acceptance probability with that ε will be very small. Since the
method nevertheless leaves the correct distribution invariant, it follows that the run only
rarely moves to this region from a region where the chosen ε leads to stable trajectories.
One simple context where this problem can arise is when sampling from a distribution with
very light tails (lighter than a Gaussian distribution), for which the log of the density will
fall faster than quadratically. In the tails, the gradient of the log density will be large, and a
small stepsize will be needed for stability. See Roberts and Tweedie (1996) for a discussion
of this in the context of the Langevin method (see Section 5.5.2).

This problem can be alleviated by choosing ε randomly from some distribution. Even if the
mean of this distribution is too large, suitably small values for εmay be chosen occasionally.
(See Section 5.3.2 for another reason to randomly vary the stepsize.) The random choice of
ε should be done once at the start of a trajectory, not for every leapfrog step, since even if
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all the choices are below the stability limit, random changes at each step lead to a random
walk in the error for H, rather than the bounded error that is illustrated in Figure 5.3.

The “short-cut” procedures described in Section 5.5.6 can be seen as ways of saving
computation time when a randomly chosen stepsize is inappropriate.

5.4.2.3 What Trajectory Length?

Choosing a suitable trajectory length is crucial if HMC is to explore the state space sys-
tematically, rather than by a random walk. Many distributions are difficult to sample from
because they are tightly constrained in some directions, but much less constrained in other
directions. Exploring the less constrained directions is best done using trajectories that are
long enough to reach a point that is far from the current point in that direction. Trajectories
can be too long, however, as is illustrated in Figure 5.3. The trajectory shown on the left of
that figure is a bit too long, since it reverses direction and then ends at a point that might
have been reached with a trajectory about half its length. If the trajectory were a little longer,
the result could be even worse, since the trajectory would not only take longer to compute,
but might also end near its starting point.

For more complex problems, one cannot expect to select a suitable trajectory length by
looking at plots like Figure 5.3. Finding the linear combination of variables that is least
confined will be difficult, and will be impossible when, as is typical, the least confined
“direction” is actually a nonlinear curve or surface.

Setting the trajectory length by trial and error therefore seems necessary. For a problem
thought to be fairly difficult, a trajectory with L = 100 might be a suitable starting point.
If preliminary runs (with a suitable ε; see above) show that HMC reaches a nearly inde-
pendent point after only one iteration, a smaller value of L might be tried next. (Unless
these “preliminary” runs are actually sufficient, in which case there is of course no need to
do more runs.) If instead there is high autocorrelation in the run with L = 100, runs with
L = 1000 might be tried next.

As discussed at the end of Sections 5.3.2 and 5.3.3, randomly varying the length of the tra-
jectory (over a fairly small interval) may be desirable, to avoid choosing a trajectory length
that happens to produce a near-periodicity for some variable or combination of variables.

5.4.2.4 Using Multiple Stepsizes

Using the results in Section 5.4.1, we can exploit information about the relative scales of
variables to improve the performance of HMC. This can be done in two equivalent ways. If
si is a suitable scale for qi, we could transform q, by setting q′i = qi/si, or we could instead use
a kinetic energy function of K(p) = pTM−1p, with M being a diagonal matrix with diagonal
elements mi = 1/s2

i .
A third equivalent way to exploit this information, which is often the most convenient,

is to use different stepsizes for different pairs of position and momentum variables. To see
how this works, consider a leapfrog update (following Equations 5.18 through 5.20) with
mi = 1/s2

i :

pi (t+ ε/2) = pi(t)− (ε/2)
∂U
∂qi

(q(t)),

qi(t+ ε) = qi(t)+ ε s2
i pi (t+ ε/2) ,

pi(t+ ε) = pi (t+ ε/2)− (ε/2)
∂U
∂qi

(q(t+ ε)).
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Define (q(0), p(0)) to be the state at the beginning of the leapfrog step (i.e. (q(t), p(t))),
define (q(1), p(1)) to be the final state (i.e. (q(t+ ε), p(t+ ε))), and define p(1/2) to be half-way
momentum (i.e. p(t+ ε/2)). We can now rewrite the leapfrog step above as

p(1/2)

i = p(0)
i − (ε/2)

∂U
∂qi

(q(0)),

q(1)
i = q(0)

i + ε s2
i p(1/2)

i ,

p(1)
i = p(1/2)

i − (ε/2)
∂U
∂qi

(q(1)).

If we now define rescaled momentum variables, p̃i = sipi, and stepsizes εi = siε, we can
write the leapfrog update as

p̃(1/2)

i = p̃(0)
i − (εi/2)

∂U
∂qi

(q(0)),

q(1)
i = q(0)

i + εi p̃(1/2)

i ,

p̃(1)
i = p̃(1/2)

i − (εi/2)
∂U
∂qi

(q(1)).

This is just like a leapfrog update with all mi = 1, but with different stepsizes for different
(qi, pi) pairs. Of course, the successive values for (q, p̃) can no longer be interpreted as
following Hamiltonian dynamics at consistent time points, but that is of no consequence
for the use of these trajectories in HMC. Note that when we sample for the momentum
before each trajectory, each p̃i is drawn independently from a Gaussian distribution with
mean zero and variance one, regardless of the value of si.

This multiple stepsize approach is often more convenient, especially when the estimated
scales, si, are not fixed, as discussed in Section 5.4.5, and the momentum is only partially
refreshed (Section 5.5.3).

5.4.3 Combining HMC with Other MCMC Updates

For some problems, MCMC using HMC alone will be impossible or undesirable. Two
situations where non-HMC updates will be necessary are when some of the variables are
discrete, and when the derivatives of the log probability density with respect to some of
the variables are expensive or impossible to compute. HMC can then be feasibly applied
only to the other variables. Another example is when special MCMC updates have been
devised that may help convergence in ways that HMC does not—for example, by moving
between otherwise isolated modes—but which are not a complete replacement for HMC.
As discussed in Section 5.4.5 below, Bayesian hierarchical models may also be best handled
with a combination of HMC and other methods such as Gibbs sampling.

In such circumstances, one or more HMC updates for all or a subset of the variables can
be alternated with one or more other updates that leave the desired joint distribution of
all variables invariant. The HMC updates can be viewed as either leaving this same joint
distribution invariant, or as leaving invariant the conditional distribution of the variables
that HMC changes, given the current values of the variables that are fixed during the HMC
update. These are equivalent views, since the joint density can be factored as this conditional
density times the marginal density of the variables that are fixed, which is just a constant
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from the point of view of a single HMC update, and hence can be left out of the potential
energy function.

When both HMC and other updates are used, it may be best to use shorter trajectories
for HMC than would be used if only HMC were being done. This allows the other updates
to be done more often, which presumably helps sampling. Finding the optimal tradeoff is
likely to be difficult, however. A variation on HMC that reduces the need for such a tradeoff
is described below in Section 5.5.3.

5.4.4 Scaling with Dimensionality

In Section 5.3.3, one of the main benefits of HMC was illustrated—its ability to avoid the
inefficient exploration of the state space via a random walk. This benefit is present (to at
least some degree) for most practical problems. For problems in which the dimensionality is
moderate to high, another benefit of HMC over simple random-walk Metropolis methods
is a slower increase in the computation time needed (for a given level of accuracy) as the
dimensionality increases. (Note that here I will consider only sampling performance after
equilibrium is reached, not the time needed to approach equilibrium from some initial state
not typical of the distribution, which is harder to analyze.)

5.4.4.1 Creating Distributions of Increasing Dimensionality by Replication

To talk about how performance scales with dimensionality we need to assume something
about how the distribution changes with dimensionality, d.

I will assume that dimensionality increases by adding independent replicas of variables—
that is, the potential energy function for q = (q1, . . . , qd) has the form U(q) = Σui(qi), for
functions ui drawn independently from some distribution. Of course, this is not what any
real practical problem is like, but it may be a reasonable model of the effect of increas-
ing dimensionality for some problems—for instance, in statistical physics, distant regions
of large systems are often nearly independent. Note that the independence assumption
itself is not crucial since, as discussed in Section 5.4.1, the performance of HMC (and of
simple random-walk Metropolis) does not change if independence is removed by rotat-
ing the coordinate system, provided the kinetic energy function (or random-walk proposal
distribution) is rotationally symmetric.

For distributions of this form, in which the variables are independent, Gibbs sampling
will perform very well (assuming it is feasible), producing an independent point after each
scan of all variables.Applying Metropolis updates to each variable separately will also work
well, provided the time for a single-variable update does not grow with d. However, these
methods are not invariant to rotation, so this good performance may not generalize to the
more interesting distributions for which we hope to obtain insight with the analysis below.

5.4.4.2 Scaling of HMC and Random-Walk Metropolis

Here, I discuss informally how well HMC and random-walk Metropolis scale with
dimension, loosely following Creutz (1988, Section III).

To begin, Cruetz notes that the following relationship holds when any Metropolis-style
algorithm is used to sample a density P(x) = (1/Z) exp(−E(x)):

1 = E [P(x∗)/P(x)] = E [exp(−(E(x∗)− E(x)))] = E [exp(−Δ)], (5.26)
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where x is the current state, assumed to be distributed according to P(x), x∗ is the proposed
state, and Δ = E(x∗)− E(x). Jensen’s inequality then implies that the expectation of the
energy difference is nonnegative:

E [Δ] ≥ 0.

The inequality will usually be strict.
When U(q) = Σui(qi), and proposals are produced independently for each i, we can apply

these relationships either to a single variable (or pair of variables) or to the entire state. For a
single variable (or pair), I will writeΔ1 for E(x∗)− E(x), with x = qi and E(x) = ui(qi), or x =
(qi, pi) and E(x) = ui(qi)+ p2

i /2. For the entire state, I will writeΔd for E(x∗)− E(x), with x =
q and E(x) = U(q), or x = (q, p) and E(x) = U(q)+ K(p). For both random-walk Metropolis
and HMC, increasing dimension by replicating variables will lead to increasing energy
differences, sinceΔd is the sum ofΔ1 for each variable, each of which has positive mean. This
will lead to a decrease in the acceptance probability—equal to min(1, exp(−Δd))—unless
the width of the proposal distribution or the leapfrog stepsize is decreased to compensate.

More specifically, for random-walk Metropolis with proposals that change each variable
independently, the difference in potential energy between a proposed state and the current
state will be the sum of independent differences for each variable. If we fix the standard
deviation, ς, for each proposed change, the mean and the variance of this potential energy
difference will both grow linearly with d, which will lead to a progressively lower accep-
tance rate. To maintain reasonable performance, ς will have to decrease as d increases.
Furthermore, the number of iterations needed to reach a nearly independent point will be
proportional to ς−2, since exploration is via a random walk.

Similarly, when HMC is used to sample from a distribution in which the components
of q are independent, using the kinetic energy K(p) = Σ p2

i /2, the different (qi, pi) pairs do
not interact during the simulation of a trajectory—each (qi, pi) pair follows Hamiltonian
dynamics according to just the one term in the potential energy involving qi and the one
term in the kinetic energy involving pi. There is therefore no need for the length in fictitious
time of a trajectory to increase with dimensionality. However, acceptance of the endpoint of
the trajectory is based on the error in H due to the leapfrog approximation, which is the sum
of the errors pertaining to each (qi, pi) pair. For a fixed stepsize, ε, and fixed trajectory length,
εL, both the mean and the variance of the error in H grow linearly with d. This will lead to
a progressively lower acceptance rate as dimensionality increases, if it is not counteracted
by a decrease in ε. The number of leapfrog steps needed to reach an independent point will
be proportional to ε−1.

To see which method scales better, we need to determine how rapidly we must reduce
ς and ε as d increases, in order to maintain a reasonable acceptance rate. As d increases
and ς or ε goes to zero, Δ1 will go to zero as well. Using a second-order approximation of
exp(−Δ1) as 1−Δ1 +Δ2

1/2, together with Equation 5.26, we find that

E [Δ1] ≈ E [Δ2
1]

2
. (5.27)

It follows from this that the variance of Δ1 is twice the mean of Δ1 (when Δ1 is small),
which implies that the variance ofΔd is twice the mean ofΔd (even whenΔd is not small).
To achieve a good acceptance rate, we must therefore keep the mean ofΔd near one, since a
large mean will not be saved by a similarly large standard deviation (which would produce
fairly frequent acceptances as Δd occasionally takes on a negative value).

For random-walk Metropolis with a symmetric proposal distribution, we can see how ς

needs to scale by directly averaging Δ1 for a proposal and its inverse. Let the proposal for
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one variable be x∗ = x + c, and suppose that c = a and c = −a are equally likely. Approx-
imating U(x∗) to second order as U(x)+ cU′(x)+ c2U′′(x)/2, we find that the average of
Δ1 = U(x∗)−U(x) over c = a and c = −a is a2U′′(x). Averaging this over the distribution
of a, with standard deviation ς, and over the distribution of x, we see that E [Δ1] is propor-
tional to ς2. It follows that E [Δd] is proportional to dς2, so we can maintain a reasonable
acceptance rate by letting ς be proportional to d−1/2. The number of iterations needed to
reach a nearly independent point will be proportional to ς−2, which will be proportional
to d. The amount of computation time needed will typically be proportional to d2.

As discussed at the end of Section 5.2.3, the error in H when using the leapfrog discretiza-
tion to simulate a trajectory of a fixed length is proportional to ε2 (for sufficiently small ε).
The error in H for a single (qi, pi) pair is the same as Δ1, so we see that Δ2

1 is proportional
to ε4. Equation 5.27 then implies that E [Δ1] is also proportional to ε4. The average total
error in H for all variables, E [Δd], will be proportional to dε4, and hence we must make ε
be proportional to d−1/4 to maintain a reasonable acceptance rate. The number of leapfrog
updates to reach a nearly independent point will therefore grow as d1/4, and the amount of
computation time will typically grow as d5/4, which is much better than the d2 growth for
random-walk Metropolis.

5.4.4.3 Optimal Acceptance Rates

By extending the analysis above, we can determine what the acceptance rate of proposals
is when the optimal choice of ς or ε is used. This is helpful when tuning the algorithms—
provided, of course, that the distribution sampled is high-dimensional, and has properties
that are adequately modeled by a distribution with replicated variables.

To find this acceptance rate, we first note that since Metropolis methods satisfy detailed
balance, the probability of an accepted proposal with Δd negative must be equal to the
probability of an accepted proposal with Δd positive. Since all proposals with negative
Δd are accepted, the acceptance rate is simply twice the probability that a proposal has a
negative Δd. For large d, the central limit theorem implies that the distribution of Δd is
Gaussian, since it is a sum of d independent Δ1 values. (This assumes that the variance
of each Δ1 is finite.) We saw above that the variance of Δd is twice its mean, E [Δd] =
μ. The acceptance probability can therefore be written as follows (Gupta et al., 1990),
for large d:

P(accept) = 2Φ
(

(0− μ)√
2μ

)
= 2Φ

(
−√μ/2

)
= a(μ), (5.28)

whereΦ(z) is the cumulative distribution function for a Gaussian variable with mean zero
and variance one.

For random-walk Metropolis, the cost of obtaining an independent point will be propor-
tional to 1/(aς2), where a is the acceptance rate. We saw above thatμ = E [Δd] is proportional
to ς2, so the cost follows the proportionality

Crw ∝ 1
(a(μ)μ)

.

Numerical calculation shows that this is minimized when μ = 2.8 and a(μ) = 0.23.



142 Handbook of Markov Chain Monte Carlo

For HMC, the cost of obtaining an independent point will be proportional to 1/(aε), and
as we saw above, μ is proportional to ε4. From this we obtain

CHMC ∝ 1
(a(μ)μ1/4)

.

Numerical calculation shows that the minimum is when μ = 0.41 and a(μ) = 0.65.
The same optimal 23% acceptance rate for random-walk Metropolis was previously

obtained using a more formal analysis by Roberts et al. (1997). The optimal 65% accep-
tance rate for HMC that I derive above is consistent with previous empirical results on
distributions following the model here (Neal, 1994, Figure 2), and on real high-dimensional
problems (Creutz, 1988, Figures 2 and 3; Sexton and Weingarten, 1992, Table 1). Kennedy
and Pendleton (1991) obtained explicit and rigorous results for HMC applied to multivariate
Gaussian distributions.

5.4.4.4 Exploring the Distribution of Potential Energy

The better scaling behavior of HMC seen above depends crucially on the resampling of
momentum variables. We can see this by considering how well the methods explore the
distribution of the potential energy, U(q) = Σui(qi). Because U(q) is a sum of d independent
terms, its standard deviation will grow in proportion to d1/2.

Following Caracciolo et al. (1994), we note that the expected change in potential energy
from a single Metropolis update will be no more than order 1—intuitively, large upwards
changes are unlikely to be accepted, and since Metropolis updates satisfy detailed balance,
large downward changes must also be rare (in equilibrium). Because changes in U will
follow a random walk (due again to detailed balance), it will take at least order (d1/2/ 1)2 = d
Metropolis updates to explore the distribution of U.

In the first step of an HMC iteration, the resampling of momentum variables will typically
change the kinetic energy by an amount that is proportional to d1/2, since the kinetic energy
is also a sum of d independent terms, and hence has standard deviation that grows as d1/2

(more precisely, its standard deviation is d1/2/21/2). If the second step of HMC proposes a
distant point, this change in kinetic energy (and hence in H) will tend, by the end of the
trajectory, to have become equally split between kinetic and potential energy. If the endpoint
of this trajectory is accepted, the change in potential energy from a single HMC iteration
will be proportional to d1/2, comparable to its overall range of variation. So, in contrast to
random-walk Metropolis, we may hope that only a few HMC iterations will be sufficient
to move to a nearly independent point, even for high-dimensional distributions.

Analyzing how well methods explore the distribution of U can also provide insight into
their performance on distributions that are not well modeled by replication of variables, as
we will see in the next section.

5.4.5 HMC for Hierarchical Models

Many Bayesian models are defined hierarchically. A large set of low-level parameters have
prior distributions that are determined by fewer higher-level “hyperparameters,” which in
turn may have priors determined by yet-higher-level hyperparameters. For example, in a
regression model with many predictor variables, the regression coefficients might be given
Gaussian prior distributions, with a mean of zero and a variance that is a hyperparame-
ter. This hyperparameter could be given a broad prior distribution, so that its posterior
distribution is determined mostly by the data.
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One could apply HMC to these models in an obvious way (after taking the logs of variance
hyperparameters, so they will be unconstrained). However, it may be better to apply HMC
only to the lower-level parameters, for reasons I will now discuss. (See Section 5.4.3 for
general discussion of applying HMC to a subset of variables.)

I will use my work on Bayesian neural network models (Neal, 1996a) as an exam-
ple. Such models typically have several groups of low-level parameters, each with an
associated variance hyperparameter. The posterior distribution of these hyperparameters
reflects important aspects of the data, such as which predictor variables are most rele-
vant to the task. The efficiency with which values for these hyperparameters are sampled
from the posterior distribution can often determine the overall efficiency of the MCMC
method.

I use HMC only for the low-level parameters in Bayesian neural network models, with
the hyperparameters being fixed during an HMC update. These HMC updates alternate
with Gibbs sampling updates of the hyperparameters, which (in the simpler versions of
the models) are independent given the low-level parameters, and have conditional distri-
butions of standard form. By using HMC only for the low-level parameters, the leapfrog
stepsizes used can be set using heuristics that are based on the current hyperparameter val-
ues. (I use the multiple stepsize approach described at the end of Section 5.4.2, equivalent
to using different mass values, mi, for different parameters.) For example, the size of the
network “weights” on connections out of a “hidden unit” determine how sensitive the like-
lihood function is to changes in weights on connections into the hidden unit; the variance of
the weights on these outgoing connections is therefore useful in setting the stepsize for the
weights on the incoming connections. If the hyperparameters were changed by the same
HMC updates as change the lower-level parameters, using them to set stepsizes would not
be valid, since a reversed trajectory would use different stepsizes, and hence not retrace the
original trajectory. Without a good way to set stepsizes, HMC for the low-level parameters
would likely be much less efficient.

Choo (2000) bypassed this problem by using a modification of HMC in which trajec-
tories are simulated by alternating leapfrog steps that update only the hyperparameters
with leapfrog steps that update only the low-level parameters. This procedure maintains
both reversibility and volume-preservation (though not necessarily symplecticness), while
allowing the stepsizes for the low-level parameters to be set using the current values of
the hyperparameters (and vice versa). However, performance did not improve as hoped
because of a second issue with hierarchical models.

In these Bayesian neural network models, and many other hierarchical models, the joint
distribution of both low-level parameters and hyperparameters is highly skewed, with
the probability density varying hugely from one region of high posterior probability to
another. Unless the hyperparameters controlling the variances of low-level parameters
have very narrow posterior distributions, the joint posterior density for hyperparame-
ters and low-level parameters will vary greatly from when the variance is low to when it
is high.

For instance, suppose that in its region of high posterior probability, a variance hyperpa-
rameter varies by a factor of 4. If this hyperparameter controls 1000 low-level parameters,
their typical prior probability density will vary by a factor of 21000 = 1.07 × 10301, corre-
sponding to a potential energy range of log(21000) = 693, with a standard deviation of
693/121/2 = 200 (since the variance of a uniform distribution is one twelfth of its range). As
discussed at the end of Section 5.4.4, one HMC iteration changes the energy only through
the resampling of the momentum variables, which at best leads to a change in potential
energy with standard deviation of about d1/2/23/2. For this example, with 1000 low-level
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parameters, this is 11.2, so about (200/11.2)2 = 319 HMC iterations will be needed to reach
an independent point.

One might obtain similar performance for this example using Gibbs sampling. However,
for neural network models, there is no feasible way of using Gibbs sampling for the pos-
terior distribution of the low-level parameters, but HMC can be applied to the conditional
distribution of the low-level parameters given the hyperparameters. Gibbs sampling can
then be used to update the hyperparameters. As we have seen, performance would not be
improved by trying to update the hyperparameters with HMC as well, and updating them
by Gibbs sampling is easier.

Choo (2000) tried another approach that could potentially improve on this—
reparameterizing low-level parameters θi, all with variance exp(κ), by letting θi =
φi exp(κ/2), and then sampling for κ and the φi using HMC. The reparameterization elim-
inates the extreme variation in probability density that HMC cannot efficiently sample.
However, he found that it is difficult to set a suitable stepsize for κ, and that the error in H
tended to grow with trajectory length, unlike the typical situation when HMC is used only
for the low-level parameters. Use of “tempering” techniques (see Section 5.5.7) is another
possibility.

Even though it does not eliminate all difficulties, HMC is very useful for Bayesian neural
network models—indeed, without it, they might not be feasible for most applications. Using
HMC for at least the low-level parameter can produce similar benefits for other hierarchical
models (e.g. Ishwaran, 1999), especially when the posterior correlations of these low-level
parameters are high. As in any application of HMC, however, careful tuning of the stepsize
and trajectory length is generally necessary.

5.5 Extensions of and Variations on HMC

The basic HMC algorithm (Figure 5.2) can be modified in many ways, either to improve its
efficiency, or to make it useful for a wider range of distributions. In this section, I will start
by discussing alternatives to the leapfrog discretization of Hamilton’s equations, and also
show how HMC can handle distributions with constraints on the variables (e.g. variables
that must be positive). I will then discuss a special case of HMC—when only one leapfrog
step is done—and show how it can be extended to produce an alternative method of avoid-
ing random walks, which may be useful when not all variables are updated by HMC.
Most applications of HMC can benefit from using a variant in which “windows” of states
are used to increase the acceptance probability. Another widely applicable technique is to
use approximations to the Hamiltonian to compute trajectories, while still obtaining correct
results by using the exact Hamiltonian when deciding whether to accept the endpoint of the
trajectory. Tuning of HMC may be assisted by using a “short-cut” method that avoids com-
puting the whole trajectory when the stepsize is inappropriate. Tempering methods have
potential to help with distributions having multiple modes, or which are highly skewed.

There are many other variations that I will not be able to review here, such as the use
of a “shadow Hamiltonian” that is exactly conserved by the inexact simulation of the real
Hamiltonian (Izagguirre and Hampton, 2004), and the use of symplectic integration meth-
ods more sophisticated than the leapfrog method (e.g. Creutz and Gocksch, 1989), including
a recent proposal by Girolami et al. (2009) to use a symplectic integrator for a nonseparable
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Hamiltonian in which M in the kinetic energy of (Equation 5.5) depends on q, allowing for
“adaptation” based on local information.

5.5.1 Discretization by Splitting: Handling Constraints and Other Applications

The leapfrog method is not the only discretization of Hamilton’s equations that is reversible
and volume-preserving, and hence can be used for HMC. Many “symplectic integration
methods” have been devised, mostly for applications other than HMC (e.g. simulating the
solar system for millions of years to test its stability). It is possible to devise methods that
have a higher order of accuracy than the leapfrog method (see, e.g. McLachlan and Atela,
1992). Using such a method for HMC will produce asymptotically better performance than
the leapfrog method, as dimensionality increases. Experience has shown, however, that the
leapfrog method is hard to beat in practice.

Nevertheless, it is worth taking a more general look at how Hamiltonian dynamics can
be simulated, since this also points to how constraints on the variables can be handled, as
well as possible improvements such as exploiting partial analytic solutions.

5.5.1.1 Splitting the Hamiltonian

Many symplectic discretizations of Hamiltonian dynamics can be derived by “splitting”
the Hamiltonian into several terms, and then, for each term in succession, simulating the
dynamics defined by that term for some small time step, then repeating this procedure
until the desired total simulation time is reached. If the simulation for each term can be
done analytically, we obtain a symplectic approximation to the dynamics that is feasible to
implement.

This general scheme is described by Leimkuhler and Reich (2004, Section 4.2) and by
Sexton and Weingarten (1992). Suppose that the Hamiltonian can be written as a sum of k
terms, as follows:

H(q, p) = H1(q, p)+H2(q, p)+ · · · +Hk−1(q, p)+Hk(q, p).

Suppose also that we can exactly implement Hamiltonian dynamics based on each Hi,
for i = 1, . . ., k, with Ti,ε being the mapping defined by applying dynamics based on Hi for
time ε.As shown by Leimkuhler and Reich, if the Hi are twice differentiable, the composition
of these mappings, T1,ε ◦ T2,ε ◦ · · · ◦ Tk−1,ε ◦ Tk,ε, is a valid discretization of Hamiltonian
dynamics based on H, which will reproduce the exact dynamics in the limit as ε goes to
zero, with global error of order ε or less.

Furthermore, this discretization will preserve volume, and will be symplectic, since these
properties are satisfied by each of the Ti,εmappings. The discretization will also be reversible
if the sequence of Hi is symmetrical—that is, Hi(q, p) = Hk−i+1(q, p).As mentioned at the end
of Section 5.2.3, any reversible method must have global error of even order in ε (Leimkuhler
and Reich, 2004, Section 4.3.3), which means that the global error must be of order ε2 or
better.

We can derive the leapfrog method from a symmetrical splitting of the Hamiltonian.
If H(q, p) = U(q)+ K(p), we can write the Hamiltonian as

H(q, p) = U(q)
2

+ K(p)+ U(q)
2

,
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which corresponds to a split with H1(q, p) = H3(q, p) = U(q)/2 and H2(q, p) = K(p).
Hamiltonian dynamics based on H1 is (Equations 5.1 and 5.2):

dqi

dt
= ∂H1

∂pi
= 0,

dpi

dt
= −∂H1

∂qi
= −1

2
∂U
∂qi

.

Applying this dynamics for time ε just adds−(ε/2) ∂U/∂qi to each pi, which is the first part
of a leapfrog step (Equation 5.18). The dynamics based on H2 is as follows:

dqi

dt
= ∂H2

∂pi
= ∂K

∂pi
,

dpi

dt
= −∂H2

∂qi
= 0.

If K(p) = 1
2
∑

p2
i /mi, applying this dynamics for time ε results in adding εpi/mi to each qi,

which is the second part of a leapfrog step Equation 5.19. Finally, H3 produces the third
part of a leapfrog step (Equation 5.20), which is the same as the first part, since H3 = H1.

5.5.1.2 Splitting to Exploit Partial Analytical Solutions

One situation where splitting can help is when the potential energy contains a term that
can, on its own, be handled analytically. For example, the potential energy for a Bayesian
posterior distribution will be the sum of minus the log prior density for the parameters
and minus the log likelihood. If the prior is Gaussian, the log prior density term will be
quadratic, and can be handled analytically (see the one-dimensional example at the end of
Section 5.2.1).

We can modify the leapfrog method for this situation by using a modified split. Suppose
that U(q) = U0(q)+U1(q), with U0 being analytically tractable, in conjunction with the
kinetic energy, K(p). We use the split

H(q, p) = U1(q)
2

+ [U0(q)+ K(p)
]+ U1(q)

2
, (5.29)

that is, H1(q, p) = H3(q, p) = U1(q)/2 and H2(q, p) = U0(q)+ K(p). The first and last half
steps for p are the same as for ordinary leapfrog, based on U1 alone. The middle full step
for q, which in ordinary leapfrog just adds εp to q, is replaced by the analytical solution for
following the exact dynamics based on the Hamiltonian U0(q)+ K(p) for time ε.

With this procedure, it should be possible to use a larger stepsize (and hence use fewer
steps in a trajectory), since part of the potential energy has been separated out and handled
exactly. The benefit of handling the prior exactly may be limited, however, since the prior
is usually dominated by the likelihood.

5.5.1.3 Splitting Potential Energies with Variable Computation Costs

Splitting can also help if the potential energy function can be split into two terms, one of
which requires less computation time to evaluate than the other (Sexton and Weingarten,
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1992). Suppose that U(q) = U0(q)+U1(q), with U0 being cheaper to compute than U1, and
let the kinetic energy be K(p). We can use the following split, for some M > 1:

H(q, p) = U1(q)
2

+
M∑

m=1

[
U0(q)
2M

+ K(p)

M
+ U0(q)

2M

]
+ U1(q)

2
.

We label the k = 3M + 2 terms as H1(q, p) = Hk(q, p) = U1(q)/2 and, for i = 1, . . ., M,
H3i−1(q, p) = H3i+1(q, p) = U0(q)/2M and H3i(q, p) = K(p)/M. The resulting discretization
can be seen as a nested leapfrog method. The M inner leapfrog steps involve only U0, and
use an effective stepsize of ε/M. The outer leapfrog step takes half steps for p using only
U1, and replaces the update for q in the middle with the M inner leapfrog steps.

If U0 is much cheaper to compute than U1, we can use a large value for M without
increasing computation time by much. The stepsize, ε, that we can use will then be limited
mostly by the properties of U1, since the effective stepsize for U0 is much smaller, ε/M.
Using a bigger ε than with the standard leapfrog method will usually be possible, and
hence we will need fewer steps in a trajectory, with fewer computations of U1.

5.5.1.4 Splitting according to Data Subsets

When sampling from the posterior distribution for a Bayesian model of independent data
points, it may be possible to save computation time by splitting the potential energy into
terms for subsets of the data.

Suppose that we partition the data into subsets Sm, for m = 1, . . ., M, typically of roughly
equal size. We can then write the log likelihood function as �(q) =∑M

m=1 �m(q), where �m
is the log likelihood function based on the data points in Sm. If π(q) is the prior density for
the parameters, we can let Um(q) = − log(π(q))/M − �m(q), and split the Hamiltonian as
follows:

H(q, p) =
M∑

m=1

[
Um(q)

2
+ K(p)

/
M + Um(q)

2

]
;

that is, we let the k = 3M terms be H3m−2(q, p) = H3m(q, p) = Um(q)/2 and H3m−1(q, p) =
K(p)/m. The resulting discretization with stepsize ε effectively performs M leapfrog steps
with stepsize ε/M, with the mth step using MUm as the potential energy function.

This scheme can be beneficial if the data set is redundant, with many data points that are
similar. We then expect MUm(q) to be approximately the same as U(q), and we might hope
that we could set ε to be M times larger than with the standard leapfrog method, obtaining
similar results with M times less computation. In practice, however, the error in H at the
end of the trajectory will be larger than with standard leapfrog, so the gain will be less than
this. I found (Neal, 1996a, Sections 3.5.1 and 3.5.2) that the method can be beneficial for
neural network models, especially when combined with the windowed HMC procedure
described below in Section 5.5.4.

Note that unlike the other examples above, this split is not symmetrical, and hence the
resulting discretization is not reversible. However, it can still be used to produce a proposal
for HMC as long as the labeling of the subsets is randomized for each iteration, so that the
reverse trajectory has the same probability of being produced as the forward trajectory. (It
is possible, however, that some symmetrical variation on this split might produce better
results.)
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5.5.1.5 Handling Constraints

An argument based on splitting shows how to handle constraints on the variables being
sampled. Here, I will consider only separate constraints on some subset of the variables,
with the constraint on qi taking the form qi ≤ ui, or qi ≥ li, or both. A similar scheme can
handle constraints taking the form G(q) ≥ 0, for any differentiable function G.

We can impose constraints on variables by letting the potential energy be infinite for
values of q that violate any of the constraints, which will give such points probabil-
ity zero. To see how to handle such infinite potential energies, we can look at a limit
of potential energy functions that approach infinity, and the corresponding limit of the
dynamics.

To illustrate, suppose that U∗(q) is the potential energy ignoring constraints, and that qi
is constrained to be less than ui. We can take the limit as r →∞ of the following potential
energy function (which is one of many that could be used):

U(q) = U∗(q)+ Cr(qi, ui), where Cr(qi, ui) =
{

0, if qi ≤ ui,

rr+1(qi − ui)
r, if qi > ui.

It is easy to see that limr→∞ Cr(qi, ui) is zero for any qi ≤ ui and infinity for any qi > ui. For
any finite r > 1, U(q) is differentiable, so we can use it to define Hamiltonian dynamics.

To simulate the dynamics based on this U(q), with a kinetic energy K(p) = 1
2
∑

p2
i /mi, we

can use the split of Equation 5.29, with U1(q) = U∗(q) and U0(q) = Cr(qi, ui):

H(q, p) = U∗(q)
2

+ [Cr(qi, ui)+ K(p)
]+ U∗(q)

2
.

This produces a variation on the leapfrog method in which the half steps for p (Equa-
tions 5.18 and 5.19) remain the same, but the full step for q (Equation 5.19) is modified to
account for the constraint on qi. After computing q′i = qi(t)+ εpi(t+ ε/2)/mi, we check if
q′i > ui. If not, the value of Cr(qi, ui) must be zero all along the path from qi to q′i, and we can
set q(t+ ε) to q′i. But if q′i > ui, the dynamics based on the Hamiltonian Cr(qi, ui)+ K(p) will
be affected by the Cr term. This term can be seen as a steep hill, which will be climbed as qi

moves past ui, until the point is reached where Cr is equal to the previous value of 1
2 p2

i /mi,
at which point pi will be zero. (If r is sufficiently large, as it will be in the limit as r →∞,
this point will be reached before the end of the full step.) We will then fall down the hill,
with pi taking on increasingly negative values, until we again reach qi = ui, when pi will be
just the negative of the original value of pi. We then continue, now moving in the opposite
direction, away from the upper limit.

If several variables have constraints, we must follow this procedure for each, and if a vari-
able has both upper and lower constraints, we must repeat the procedure until neither con-
straint is violated. The end result is that the full step for q of Equation 5.19 is replaced by the
procedure shown in Figure 5.8. Intuitively, the trajectory just bounces off the “walls” given
by the constraints. If U∗(q) is constant, these bounces are the only interesting aspect of the
dynamics, and the procedure is sometimes referred to as “billiards” (see, e.g. Ruján, 1997).

5.5.2 Taking One Step at a Time—The Langevin Method

A special case of HMC arises when the trajectory used to propose a new state consists
of only a single leapfrog step. Suppose that we use the kinetic energy K(p) = 1

2
∑

p2
i . An
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For each variable, i=1, . . . ,d:

1) Let p′i= pi(t+ε/2)

2) Let q ′i=qi(t)+εp′i/mi

3) If qi is constrained, repeat the following until q ′i satisfies
all constraints:

a) If qi has an upper constraint, and q ′i > ui

Let q ′i=ui-(q ′i-ui) and p′i=-p′i
b) If qi has a lower constraint, and q ′i < li

Let q ′i=li+(li-q ′i) and p′i=-p′i
4) Let qi(t+ε)=q

′
i and pi(t+ε/2)=p

′
i

FIGURE 5.8
Modification to the leapfrog update of q (Equation 5.19) to handle constraints of the form qi ≤ ui or qi ≤ li .

iteration of HMC with one leapfrog step can be expressed in the following way. We sample
values for the momentum variables, p, from their Gaussian distributions with mean zero
and variance one, and then propose new values, q∗ and p∗, as follows:

q∗i = qi − ε
2

2
∂U
∂qi

(q)+ εpi, (5.30)

p∗i = pi − ε2
∂U
∂qi

(q)− ε
2

∂U
∂qi

(q∗). (5.31)

We accept q∗ as the new state with probability

min

[
1, exp

(
−(U(q∗)−U(q))− 1

2

∑
i

((p∗i )
2 − p2

i )

)]
, (5.32)

and otherwise keep q as the new state. Equation 5.30 is known in physics as one type of
“Langevin equation,” and this method is therefore known as Langevin Monte Carlo (LMC)
in the lattice field theory literature (e.g. Kennedy, 1990).

One can also remove any explicit mention of momentum variables, and view this method
as performing a Metropolis–Hastings update in which q∗ is proposed from a Gaussian dis-
tribution where the q∗i are independent, with means of qi − (ε2/2)[∂U/∂qi](q) and variances
of ε2. Since this proposal is not symmetrical, it must be accepted or rejected based both on
the ratio of the probability densities of q∗ and q and on the ratio of the probability densities
for proposing q from q∗ and vice versa (Hastings, 1970). To see the equivalence with HMC
using one leapfrog step, we can write the Metropolis–Hastings acceptance probability as
follows:

min

⎡
⎣1,

exp(−U(q∗))
exp(−U(q))

d∏
i=1

exp
(− (qi − q∗i + (ε2/2) [∂U/∂qi](q∗)

)2
/ 2ε2

)
exp

(− (q∗i − qi + (ε2/2) [∂U/∂qi](q)
)2

/ 2ε2
)
⎤
⎦ . (5.33)
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To see that this is the same as Equation 5.32, note that using Equations 5.30 and 5.31, we
can write

p = 1
ε

[
q∗i − qi + ε

2

2
∂U
∂qi

(q)

]
,

p∗ = −1
ε

[
qi − q∗i +

ε2

2
∂U
∂qi

(q∗)
]

.

After substituting these into Equation 5.32, it is straightforward to see the equivalence
to Equation 5.33.

In this Metropolis–Hastings form, the LMC method was first proposed by Rossky
et al. (1978) for use in physical simulations. Approximate Langevin methods without an
accept/reject step can also be used (for a discussion of this, see Neal, 1993, Section 5.3)—as,
for instance, in a paper on statistical inference for complex models by Grenander and Miller
(1990), where also an accept/reject step is proposed in the discussion by J. Besag (p. 591).

Although LMC can be seen as a special case of HMC, its properties are quite different.
Since LMC updates are reversible, and generally make only small changes to the state (since
ε typically cannot be very large), LMC will explore the distribution via an inefficient random
walk, just like random-walk Metropolis updates.

However, LMC has better scaling behavior than random-walk Metropolis as dimension-
ality increases, as can be seen from an analysis paralleling that in Section 5.4.4 (Creutz, 1988;
Kennedy, 1990). The local error of the leapfrog step is of order ε3, so E [Δ2

1], the average
squared error in H from one variable, will be of order ε6. From Equation 5.27, E [Δ]will also
be of order ε6, and with d independent variables, E [Δd]will be of order dε6, so that εmust
scale as d−1/6 in order to maintain a reasonable acceptance rate. Since LMC explores the dis-
tribution via a random walk, the number of iterations needed to reach a nearly independent
point will be proportional to ε−2, which grows as d1/3, and the computation time to reach
a nearly independent point grows as d4/3. This is better than the d2 growth in computation
time for random-walk Metropolis, but worse than the d5/4 growth when HMC is used with
trajectories that are long enough to reach a nearly independent point.

We can also find what the acceptance rate for LMC will be when the optimal ε is used, when
sampling a distribution with independent variables replicated d times. As for random-walk
Metropolis and HMC, the acceptance rate is given in terms of μ = E [Δd] by Equation 5.28.
The cost of obtaining a nearly independent point using LMC is proportional to 1/(a(μ)ε2),
and since μ is proportional to ε6, we can write the cost as

CLMC ∝ 1
(a(μ)μ1/3)

.

Numerical calculation shows that this is minimized when a(μ) is 0.57, a result obtained
more formally by Roberts and Rosenthal (1998). This may be useful for tuning, if the behav-
ior of LMC for the distribution being sampled resembles its behavior when sampling for
replicated independent variables.

5.5.3 Partial Momentum Refreshment: Another Way to Avoid Random Walks

The single leapfrog step used in the LMC algorithm will usually not be sufficient to move to
a nearly independent point, so LMC will explore the distribution via an inefficient random
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walk. This is why HMC is typically used with trajectories of many leapfrog steps. An alter-
native that can suppress random-walk behavior even when trajectories consist of just one
leapfrog step is to only partially refresh the momentum between trajectories, as proposed
by Horowitz (1991).

Suppose that the kinetic energy has the typical form K(p) = pTM−1p/2. The following
update for p will leave invariant the distribution for the momentum (Gaussian with mean
zero and covariance M):

p′ = αp+ (1− α2)1/2n. (5.34)

Here, α is any constant in the interval [−1,+1], and n is a Gaussian random vector with
mean zero and covariance matrix M. To see this, note that if p has the required Gaussian
distribution, the distribution of p′ will also be Gaussian (since it is a linear combination of
independent Gaussians), with mean 0 and covariance α2M + (1− α2)M = M.

If α is only slightly less than one, p′ will be similar to p, but repeated updates of this
sort will eventually produce a value for the momentum variables almost independent of
the initial value. When α = 0, p′ is just set to a random value drawn from its Gaussian
distribution, independent of its previous value. Note that when M is diagonal, the update
of each momentum variable, pi, is independent of the updates of other momentum variables.

The partial momentum update of Equation 5.34 can be substituted for the full replacement
of the momentum in the standard HMC algorithm. This gives a generalized HMC algorithm
in which an iteration consists of three steps:

1. Update the momentum variables using Equation 5.34. Let the new momentum
be p′.

2. Propose a new state, (q∗, p∗), by applying L leapfrog steps with stepsize ε, starting
at (q, p′), and then negating the momentum. Accept (q∗, p∗) with probability

min
[
1, exp

(−U(q∗)+U(q)− K(p∗)+ K(p′)
)]

.

If (q∗, p∗) is accepted, let (q′′, p′′) = (q∗, p∗); otherwise, let (q′′, p′′) = (q, p′).
3. Negate the momentum, so that the new state is (q′′, −p′′).

The transitions in each of these steps—(q, p) → (q, p′), (q, p′) → (q′′, p′′), and (q′′, p′′) →
(q′′, −p′′)—leave the canonical distribution for (q, p) invariant. The entire update there-
fore also leaves the canonical distribution invariant. The three transitions also each satisfy
detailed balance, but the sequential combination of the three does not satisfy detailed bal-
ance (except when α = 0). This is crucial, since if the combination were reversible, it would
still result in random-walk behavior when L is small.

Note that omitting step (3) above would result in a valid algorithm, but then, far from
suppressing random walks, the method (with α close to one) would produce nearly back-
and-forth motion, since the direction of motion would reverse with every trajectory accepted
in step (2). With the reversal in step (3), motion continues in the same direction as long as
the trajectories in step (2) are accepted, since the two negations of p will cancel. Motion
reverses whenever a trajectory is rejected, so if random-walk behavior is to be suppressed,
the rejection rate must be kept small.

If α = 0, the above algorithm is the same as standard HMC, since step (1) will completely
replace the momentum variables, step (2) is the same as for standard HMC, and step (3) will
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have no effect, since the momentum will be immediately replaced anyway, in step (1) of
the next iteration.

Since this algorithm can be seen as a generalization of standard HMC, with an additional
α parameter, one might think it will offer an improvement, provided that α is tuned for
best performance. However, Kennedy and Pendleton (2001) show that when the method is
applied to high-dimensional multivariate Gaussian distributions only a small constant fac-
tor improvement is obtained, with no better scaling with dimensionality. Best performance
is obtained using long trajectories (L large), and a value for α that is not very close to one
(but not zero, so the optimum choice is not standard HMC). If L is small, the need to keep
the rejection rate very low (by using a small ε), as needed to suppress random walks, makes
the method less advantageous than standard HMC.

It is disappointing that only a small improvement is obtained with this generalization
when sampling a multivariate Gaussian, due to limitations that likely apply to other distri-
butions as well. However, the method may be more useful than one would think from this.
For reasons discussed in Sections 5.4.3 and 5.4.5, we will often combine HMC updates with
other MCMC updates (perhaps for variables not changed by HMC). There may then be a
tradeoff between using long trajectories to make HMC more efficient, and using shorter
trajectories so that the other MCMC updates can be done more often. If shorter-than-
optimal trajectories are to be used for this reason, setting α greater than zero can reduce the
random-walk behavior that would otherwise result.

Furthermore, rejection rates can be reduced using the “window” method described next.
An analysis of partial momentum refreshment combined with the window method might
find that using trajectories of moderate length in conjunction with a value for α greater than
zero produces a more substantial improvement.

5.5.4 Acceptance Using Windows of States

Figure 5.3 (right plot) shows how the error in H varies along a typical trajectory computed
with the leapfrog method. Rapid oscillations occur, here with a period of between 2 and
3 leapfrog steps, due to errors in simulating the motion in the most confined direction (or
directions, for higher-dimensional distributions). When a long trajectory is used to propose
a state for HMC, it is essentially random whether the trajectory ends at a state where the error
in H is negative or close to zero, and hence will be accepted with probability close to one, or
whether it happens to end at a state with a large positive error in H, and a correspondingly
lower acceptance probability. If somehow we could smooth out these oscillations, we might
obtain a high probability of acceptance for all trajectories.

I introduced a method for achieving this result that uses “windows” of states at the
beginning and end of the trajectory (Neal, 1994). Here, I will present the method as an
application of a general technique in which we probabilistically map to a state in a different
space, perform a Markov chain transition in this new space, and then probabilistically map
back to our original state space (Neal, 2006).

Our original state space consists of pairs, (q, p), of position and momentum variables. We
will map to a sequence of W pairs, [(q0, p0), . . ., (qW−1, pW−1)], in which each (qi, pi) for i>0
is the result of applying one leapfrog step (with some fixed stepsize, ε) to (qi−1, pi−1). Note
that even though a point in the new space seems to consist of W times as many numbers
as a point in the original space, the real dimensionality of the new space is the same as the
old, since the whole sequence of W pairs is determined by (q0, p0).

To probabilistically map from (q, p) to a sequence of pairs, [(q0, p0), . . ., (qW−1, pW−1)], we
select s uniformly from {0, . . ., W − 1}, and set (qs, ps) in the new state to our current state
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(q, p). The other (qi, pi) pairs in the new state are obtained using leapfrog steps from (qs, ps),
for i>s, or backwards leapfrog steps (i.e. done with stepsize −ε) for i<s. It is easy to see,
using the fact that leapfrog steps preserve volume, that if our original state is distributed
with probability density P(q, p), then the probability density of obtaining the sequence
[(q0, p0), . . ., (qW−1, pW−1)] by this procedure is

P
([(q0, p0), . . ., (qW−1, pW−1)]

) = 1
W

W−1∑
i=0

P(qi, pi), (5.35)

since we can obtain this sequence from a (q, p) pair that matches any pair in the sequence,
and the probability is 1/W that we will produce the sequence starting from each of these
pairs (which happens only if the random selection of s puts the pair at the right place in the
sequence).

Having mapped to a sequence of W pairs, we now perform a Metropolis update that
keeps the sequence distribution defined by Equation 5.35 invariant, before mapping back
to the original state space. To obtain a Metropolis proposal, we perform L−W + 1 leapfrog
steps (for some L ≥ W−1), starting from (qW−1, pW−1), producing pairs (qW , pW) to (qL, pL).
We then propose the sequence [(qL,−pL), . . ., (qL−W+1,−pL−W+1)]. We accept or reject this
proposed sequence by the usual Metropolis criterion, with the acceptance probability being

min

⎡
⎣1,

∑L
i=L−W+1 P(qi, pi)∑W−1

i=0 P(qi, pi)

⎤
⎦ , (5.36)

with P(q, p) ∝ exp(−H(q, p)). (Note here that H(q, p) = H(q,−p), and that starting from the
proposed sequence would lead symmetrically to the original sequence being proposed.)

This Metropolis update leaves us with either the sequence [(qL, pL), . . ., (qL−W+1, pL−W+1)],
called the “accept window,” or the sequence [(q0, p0), . . ., (qW−1, pW−1)], called the “reject
window.” (Note that these windows will overlap if L+ 1 < 2W.) We label the pairs in
the window chosen as [(q+0 , p+0 ), . . ., (q+W−1, p+W−1)]. We now produce a final state for the
windowed HMC update by probabilistically mapping from this sequence to a single pair,
choosing (q+e , p+e ) with probability

P(q+e , p+e )∑W−1
i=0 P(q+i , p+i )

.

If the sequence in the chosen window was distributed according to Equation 5.35, the pair
(q+e , p+e ) chosen will be distributed according to P(q, p) ∝ exp(−H(q, p)), as desired. To see
this, let (q+e+n, p+e+n) be the result of applying n leapfrog steps (backward ones if n < 0)
starting at (q+e , p+e ). The probability density that (q+e , p+e ) will result from mapping from a
sequence to a single pair can then be written as follows, considering all sequences that can
contain (q+e , p+e ) and their probabilities:

e∑
k=e−W+1

⎡
⎣ 1

W

k+W−1∑
i=k

P(q+i , p+i )

⎤
⎦ P(q+e , p+e )∑k+W−1

i=k P(q+i , p+i )

= P(q+e , p+e ).

The entire procedure therefore leaves the correct distribution invariant.
When W > 1, the potential problem with ergodicity discussed at the end of Section 5.3.2

does not arise, since there is a nonzero probability of moving to a state only one leapfrog
step away, where q may differ arbitrarily from its value at the current state.
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It might appear that the windowed HMC procedure requires saving all 2W states in the
accept and reject windows, since any one of these states might become the new state when a
state is selected from either the accept window or reject window. Actually, however, at most
three states need to be saved—the start state, so that forward simulation can be resumed
after the initial backward simulation, plus one state from the reject window and one state
from the accept window, one of which will become the new state after one of these windows
is chosen. As states in each window are produced in sequence, a decision is made whether
the state just produced should replace the state presently saved for that window. Suppose
that the sum of the probability densities of states seen so far is si = p1 + · · · + pi. If the state
just produced has probability density pi+1, it replaces the previous state saved from this
window with probability pi+1/(si + pi+1).

I showed (Neal, 1994) that, compared to standard HMC, using windows improves the
performance of HMC by a factor of 2 or more, on multivariate Gaussian distributions in
which the standard deviation in some directions is much larger than in other directions.
This is because the acceptance probability in Equation 5.36 uses an average of probability
densities over states in a window, smoothing out the oscillations in H from inexact sim-
ulation of the trajectory. Empirically, the advantage of the windowed method was found
to increase with dimensionality. For high-dimensional distributions, the acceptance proba-
bility when using the optimal stepsize was approximately 0.85, larger than the theoretical
value of 0.65 for HMC (see Section 5.4.4).

These results for multivariate Gaussian distributions were obtained with a window size,
W, much less than the trajectory length, L. For less regular distributions, it may be advanta-
geous to use a much larger window. When W = L/2, the acceptance test determines whether
the new state is from the first half of the trajectory (which includes the current state) or the
second half; the new state is then chosen from one half or the other with probabilities
proportional to the probability densities of the states in that half. This choice of W guards
against the last few states of the trajectory having low probability density (high H), as might
happen if the trajectory had by then entered a region where the stepsize used was too big.

The windowed variant of HMC may make other variants of HMC more attractive. One
such variant (Section 5.5.1) splits the Hamiltonian into many terms corresponding to subsets
of the data, which tends to make errors in H higher (while saving computation). Errors in
H have less effect when averaged over windows. As discussed in Section 5.5.3, very low
rejection rates are desirable when using partial momentum refreshment. It is easier to obtain
a low rejection probability using windows (i.e. a less drastic reduction in ε is needed), which
makes partial momentum refreshment more attractive.

Qin and Liu (2001) introduced a variant on windowed HMC. In their version, L leapfrog
steps are done from the start state, with the accept window consisting of the states after the
last W of these steps. A state from the accept window is then selected with probabilities
proportional to their probability densities. If the state selected is k states before the end, k
backwards leapfrog steps are done from the start state, and the states found by these steps
along with those up to W − k − 1 steps forward of the start state form the reject window.
The state selected from the accept window then becomes the next state with probability
given by the analog of Equation 5.36; otherwise the state remains the same.

Qin and Liu’s procedure is quite similar to the original windowed HMC procedure. One
disadvantage of Qin and Liu’s procedure is that the state is unchanged when the accept
window is rejected, whereas in the original procedure a state is selected from the reject
window (which might be the current state, but often will not be). The only other difference
is that the number of steps from the current state to an accepted state ranges from L−
W + 1 to L (average L− (W + 1)/2) with Qin and Liu’s procedure, versus from L− 2W + 2
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to L (average L−W + 1) for the original windowed HMC procedure, while the number
of leapfrog steps computed varies from L to L+W − 1 with Qin and Liu’s procedure,
and is fixed at L with the original procedure. These differences are slight if W � L. Qin
and Lin claim that their procedure performs better than the original on high-dimensional
multivariate Gaussian distributions, but their experiments are flawed.∗

Qin and Liu (2001) also introduce the more useful idea of weighting the states in the
accept and reject windows nonuniformly, which can be incorporated into the original pro-
cedure as well. When mapping from the current state to a sequence of W weighted states,
the position of the current state is chosen with probabilities equal to the weights, and when
computing the acceptance probability or choosing a state from the accept or reject win-
dow, the probability densities of states are multiplied by their weights. Qin and Liu use
weights that favor states more distant from the current state, which could be useful by
usually causing movement to a distant point, while allowing choice of a nearer point if the
distant points have low probability density. Alternatively, if one sees a window as a way of
smoothing the errors in H, symmetrical weights that implement a better “low pass filter”
would make sense.

5.5.5 Using Approximations to Compute the Trajectory

The validity of HMC does not depend on using the correct Hamiltonian when simulating
the trajectory. We can instead use some approximate Hamiltonian, as long as we sim-
ulate the dynamics based on it by a method that is reversible and volume-preserving.
However, the exact Hamiltonian must be used when computing the probability of accept-
ing the endpoint of the trajectory. There is no need to look for an approximation to the
kinetic energy, when it is of a simple form such as Equation 5.13, but the potential energy is
often much more complex and costly to compute—for instance, it may involve the sum of
log likelihoods based on many data points, if the data cannot be summarized by a simple
sufficient statistic. When using trajectories of many leapfrog steps, we can therefore save
much computation time if a fast and accurate approximation to the potential energy is avail-
able, while still obtaining exact results (apart from the usual sampling variation inherent
in MCMC).

Many ways of approximating the potential energy might be useful. For example, if its
evaluation requires iterative numerical methods, fewer iterations might be done than are
necessary to get a result accurate to machine precision. In a Bayesian statistical application,
a less costly approximation to the unnormalized posterior density (whose log gives the
potential energy) may be obtainable by simply looking at only a subset of the data. This
may not be a good strategy in general, but I have found it useful for Gaussian process
models (Neal, 1998; Rasmussen and Williams, 2006), for which computation time scales
as the cube of the number of data points, so that even a small reduction in the number of
points produces a useful speedup.

Rasmussen (2003) has proposed approximating the potential energy by modeling it as a
Gaussian process, inferred from values of the potential energy at positions selected during
an initial exploratory phase. This method assumes only a degree of smoothness of the poten-
tial energy function, and so could be widely applied. It is limited, however, by the cost of

∗ In their first comparison, their method computes an average of 55 leapfrog steps per iteration, but the original
only computes 50 steps, a difference in computation time which if properly accounted for negates the slight
advantage they see for their procedure. Their second comparison has a similar problem, and it is also clear from
an examination of the results (in their Table I) that the sampling errors in their comparison are too large for any
meaningful conclusions to be drawn.
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Gaussian process inference, and so is most useful for problems of moderate dimensionality
for which exact evaluation of the potential energy is very costly.

An interesting possibility, to my knowledge not yet explored, would be to express
the exact potential energy as the sum of an approximate potential energy and the error
in this approximation, and to then apply one of the splitting techniques described in
Section 5.5.1—exploiting either the approximation’s analytic tractability (e.g. for a Gaussian
approximation, with quadratic potential energy), or its low computational cost, so that its
dynamics can be accurately simulated at little cost using many small steps. This would
reduce the number of evaluations of the gradient of the exact potential energy if the vari-
ation in the potential energy removed by the approximation term permits a large stepsize
for the error term.

5.5.6 Short-Cut Trajectories: Adapting the Stepsize without Adaptation

One significant disadvantage of HMC is that, as discussed in Section 5.4.2, its performance
depends critically on the settings of its tuning parameters—which consist of at least the
leapfrog stepsize, ε, and number of leapfrog steps, L, with variations such as windowed
HMC having additional tuning parameters as well. The optimal choice of trajectory length
(εL) depends on the global extent of the distribution, so finding a good trajectory length
likely requires examining a substantial number of HMC updates. In contrast, just a few
leapfrog steps can reveal whether some choice of stepsize is good or bad, which leads to
the possibility of trying to set the stepsize “adaptively” during an HMC run.

Recent work on adaptive MCMC methods is reviewed by Andrieu and Thoms (2008). As
they explain, naively choosing a stepsize for each HMC update based on results of previ-
ous updates—for example, reducing the stepsize by 20% if the previous 10 trajectories were
all rejected, and increasing it by 20% if less than two of the 10 previous trajectories were
rejected—undermines proofs of correctness (in particular, the process is no longer a Markov
chain), and will in general produce points from the wrong distribution. However, correct
results can be obtained if the degree of adaptation declines over time. Adaptive methods
of this sort could be used for HMC, in much the same way as for any other tunable MCMC
method.

An alternative approach (Neal, 2005, 2007) is to perform MCMC updates with various
values of the tuning parameters, set according to a schedule that is predetermined or cho-
sen randomly without reference to the realized states, so that the usual proofs of MCMC
convergence and error analysis apply, but to do this using MCMC updates that have been
tweaked so that they require little computation time when the tuning parameters are not
appropriate for the distribution. Most of the computation time will then be devoted to
updates with appropriate values for the tuning parameters. Effectively, the tuning param-
eters are set adaptively from a computational point of view, but not from a mathematical
point of view.

For example, trajectories that are simulated with a stepsize that is much too large can
be rejected after only a few leapfrog steps, by rejecting whenever the change (either way)
in the Hamiltonian due to a single step (or a short series of steps) is greater than some
threshold—that is, we reject if |H(q(t+ ε), p(t+ ε))−H(q(t), p(t))| is greater than the thresh-
old. If this happens early in the trajectory, little computation time will have been wasted
on this unsuitable stepsize. Such early termination of trajectories is valid, since any MCMC
update that satisfies detailed balance will still satisfy detailed balance if it is modified to
eliminate transitions either way between certain pairs of states.
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With this simple modification, we can randomly choose stepsizes from some distribution
without wasting much time on those stepsizes that turn out to be much too large. However,
if we set the threshold small enough to reject when the stepsize is only a little too large,
we may terminate trajectories that would have been accepted, perhaps after a substantial
amount of computation has already been done. Trying to terminate trajectories early when
the stepsize is smaller than optimal carries a similar risk.

Aless drastic alternative to terminating trajectories when the stepsize seems inappropriate
is to instead reverse the trajectory. Suppose that we perform leapfrog steps in groups of k
steps. Based on the changes in H over these k steps, we can test whether the stepsize is
inappropriate—for example, the group may fail the test if the standard deviation of H over
the k + 1 states is greater than some upper threshold or less than some lower threshold
(any criterion that would yield the same decision for the reversed sequence is valid). When
a group of k leapfrog steps fails this test, the trajectory stays at the state where this group
started, rather than moving k steps forward, and the momentum variables are negated. The
trajectory will now exactly retrace states previously computed (and which therefore need
not be recomputed), until the initial state is reached, at which point new states will again
be computed. If another group of k steps fails the test, the trajectory will again reverse,
after which the whole remainder of the trajectory will traverse states already computed,
allowing its endpoint to be found immediately without further computation.

This scheme behaves the same as standard HMC if no group of k leapfrog steps fails the
test. If there are two failures early in the trajectory, little computation time will have been
wasted on this (most likely) inappropriate stepsize. Between these extremes, it is possible
that one or two reversals will occur, but not early in the trajectory; the endpoint of the
trajectory will then usually not be close to the initial state, so the nonnegligible computation
performed will not be wasted (as it would be if the trajectory had been terminated).

Such short-cut schemes can be effective at finding good values for a small number of
tuning parameters, for which good values will be picked reasonably often when drawing
them randomly. It will not be feasible for setting a large number of tuning parameters,
such as the entries in the “mass matrix” of Equation 5.5 when dimensionality is high, since
even if two reversals happen early on, the cost of using inappropriate values of the tuning
parameters will dominate when appropriate values are chosen only very rarely.

5.5.7 Tempering during a Trajectory

Standard HMC and the variations described so far have as much difficulty moving between
modes that are separated by regions of low probability as other local MCMC methods,
such as random-walk Metropolis and Gibbs sampling. Several general schemes have been
devised for solving problems with such isolated modes that involve sampling from a series
of distributions that are more diffuse than the distribution of interest. Such schemes include
parallel tempering (Geyer, 1991; Earl and Deem, 2005), simulated tempering (Marinari
and Parisi, 1992), tempered transitions (Neal, 1996b), and annealed importance sampling
(Neal, 2001). Most commonly, these distributions are obtained by varying a “temperature”
parameter, T, as in Equation 5.21, with T = 1 corresponding to the distribution of interest,
and larger values of T giving more diffuse distributions. Any of these “tempering” methods
could be used in conjunction with HMC. However, tempering-like behavior can also be
incorporated directly into the trajectory used to propose a new state in the HMC procedure.

In the simplest version of such a “tempered trajectory” scheme (Neal, 1999, Section 6),
each leapfrog step in the first half of the trajectory is combined with multiplication of the
momentum variables by some factor α slightly greater than one, and each leapfrog step
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in the second half of the trajectory is combined with division of the momentum by the
same factor α. These multiplications and divisions can be done in various ways, as long
as the result is reversible, and the divisions are paired exactly with multiplications. The
most symmetrical scheme is to multiply the momentum by

√
α before the first half step for

momentum (Equation 5.18) and after the second half step for momentum (Equation 5.20), for
leapfrog steps in the first half of the trajectory, and correspondingly, to divide the momen-
tum by

√
α before the first and after the second half steps for momentum in the second

half of the trajectory. (If the trajectory has an odd number of leapfrog steps, for the middle
leapfrog step of the trajectory, the momentum is multiplied by

√
α before the first half step

for momentum, and divided by
√
α after the second half step for momentum.) Note that

most of the multiplications and divisions by
√
α are preceded or followed by another such,

and so can be combined into a single multiplication or division by α.
It is easy to see that the determinant of the Jacobian matrix for such a tempered trajectory

is one, just as for standard HMC, so its endpoint can be used as a proposal without any
need to include a Jacobian factor in the acceptance probability.

Multiplying the momentum by an α that is slightly greater than one increases the value
of H(q, p) slightly. If H initially had a value typical of the canonical distribution at T = 1,
after this multiplication, H will be typical of a value of T that is slightly higher.∗ Initially,
the change in H(q, p) = K(p)+U(q) is due entirely to a change in K(p) as p is made bigger,
but subsequent dynamical steps will tend to distribute the increase in H between K and
U, producing a more diffuse distribution for q than is seen when T = 1. After many such
multiplications of p by α, values for q can be visited that are very unlikely in the distribution
at T = 1, allowing movement between modes that are separated by low-probability regions.
The divisions by α in the second half of the trajectory result in H returning to values that
are typical for T = 1, but perhaps now in a different mode.

If α is too large, the probability of accepting the endpoint of a tempered trajectory will
be small, since H at the endpoint will likely be much larger than H at the initial state. To
see this, consider a trajectory consisting of only one leapfrog step. If ε = 0, so that this step
does nothing, the multiplication by

√
α before the first half step for momentum would be

exactly canceled by the division by
√
α after the second half step for momentum, so H

would be unchanged, and the trajectory would be accepted. Since we want something to
happen, however, we will use a nonzero ε, which will on average result in the kinetic energy
decreasing when the leapfrog step is done, as the increase in H from the multiplication by√
α is redistributed from K alone to both K and U. The division of p by

√
α will now not

cancel the multiplication by
√
α—instead, on average, it will reduce H by less than the

earlier increase. This tendency for H to be larger at the endpoint than at the initial state can
be lessened by increasing the number of leapfrog steps, say by a factor of R, while reducing
α to α1/R, which (roughly) maintains the effective temperature reached at the midpoint of
the trajectory.

Figure 5.9 illustrates tempered trajectories used to sample from an equal mixture of
two bivariate Gaussian distributions, with means of [0 0] and [10 10], and covariances
of I and 2I. Each trajectory consists of 200 leapfrog steps, done with ε = 0.3, with tem-
pering done as described above with α = 1.04. The left plots show how H varies along
the trajectories; the right plots show the position coordinates for the trajectories. The

∗ This assumes that the typical value of H is a continuous function of T, which may not be true for systems that
have a “phase transition.” Where there is a discontinuity (in practice, a near-discontinuity) in the expected value
of H as a function of T, making small changes to H, as here, may be better than making small changes to T
(which may imply big changes in the distribution).
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FIGURE 5.9
Illustration of tempered trajectories on a mixture of two Gaussians. The trajectory shown in the top plots moves
between modes; the one shown in the bottom plots ends in the same mode.

top plots are for a trajectory starting at q = [−0.4 −0.9] and p = [0.7 −0.9], which has
an endpoint in the other mode around [10 10]. The bottom plots are for a trajectory
starting at q = [0.1 1.0] and p = [0.5 0.8], which ends in the same mode it begins in.
The change in H for the top trajectory is 0.69, so it would be accepted with probabil-
ity exp(−0.69) = 0.50. The change in H for the bottom trajectory is −0.15, so it would be
accepted with probability one.

By using such tempered trajectories, HMC is able to sample these two well-separated
modes—11% of the trajectories move to the other mode and are accepted—whereas stan-
dard HMC does very poorly, being trapped for a very long time in one of the modes.
The parameters for the tempered trajectories in Figure 5.9 were chosen to produce easily
interpreted pictures, and are not optimal. More efficient sampling is obtained with a much
smaller number of leapfrog steps, larger stepsize, and largerα—for example, L = 20, ε = 0.6,
and α = 1.5 give a 6% probability of moving between modes.
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Afundamental limitation of the tempering method described above is that (as for standard
HMC) the endpoint of the tempered trajectory is unlikely to be accepted if the value for H
there is much higher that for the initial state. This corresponds to the probability density
at the endpoint being much lower than at the current state. Consequently, the method will
not move well between two modes with equal total probability if one mode is high and
narrow and the other low and broad, especially when the dimensionality is high. (Since
acceptance is based on the joint density for q and p, there is some slack for moving to a
point where the density for q alone is different, but not enough to eliminate this problem.)
I have proposed (Neal, 1999) a modification that addresses this, in which the point moved
to can come from anywhere along the tempered trajectory, not just the endpoint. Such a
point must be selected based both on its value for H and the accumulated Jacobian factor
for that point, which is easily calculated, since the determinant of the Jacobian matrix for a
multiplication of p by α is simply αd, where d is the dimensionality. This modified tempering
procedure can not only move between modes of differing width, but also move back and
forth between the tails and the central area of a heavy-tailed distribution.

More details on these variations on HMC can be found in the R implementations available
from my web page, at www.cs.utoronto.ca/∼radford
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